\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{fiber integration in ordinary differential cohomology} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{differential_cohomology}{}\paragraph*{{Differential cohomology}}\label{differential_cohomology} [[!include differential cohomology - contents]] \hypertarget{integration_theory}{}\paragraph*{{Integration theory}}\label{integration_theory} [[!include integration theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{differential_orientation}{Differential orientation}\dotfill \pageref*{differential_orientation} \linebreak \noindent\hyperlink{FiberIntegration}{Via differential Thom cocycles}\dotfill \pageref*{FiberIntegration} \linebreak \noindent\hyperlink{ViaDeligneComplex}{In terms of Deligne cocycles}\dotfill \pageref*{ViaDeligneComplex} \linebreak \noindent\hyperlink{ViaSmoothHomotopyType}{In terms of smooth homotopy types}\dotfill \pageref*{ViaSmoothHomotopyType} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{abstract_formulation}{Abstract formulation}\dotfill \pageref*{abstract_formulation} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{CSInHigherCodimension}{$\infty$-Chern-Simons functionals in higher codimension}\dotfill \pageref*{CSInHigherCodimension} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The special case of [[fiber integration in differential cohomology]] for \emph{[[ordinary differential cohomology]]} is the partial [[higher parallel transport|higher]] [[holonomy]] operation for [[circle n-bundles with connection]]: for $Y \to X$ a [[bundle]] of [[compact space|compact]] [[smooth manifolds]] $S$ of [[dimension]] $k$ and $[\nabla] \in H_{diff}^n(Y)$ a class in [[ordinary differential cohomology]] of degree $n$ on $Y$, its [[fiber integration]] \begin{displaymath} \left[\exp(i \int_{Y/X} \nabla)\right] \in H^{n-k}_{diff}(X) \end{displaymath} is a differential cohomology class on $X$ of degree $k$ less. In the particular case that $X = *$ is the [[point]] and $dim Y = k = n-1$ the element \begin{displaymath} \exp(i \int_{Y} \nabla) \in H^{1}_{diff}(*) \simeq U(1) \end{displaymath} is the [[higher parallel transport|higher]] [[holonomy]] of $\nabla$ over $Y$. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{differential_orientation}{}\subsubsection*{{Differential orientation}}\label{differential_orientation} The operation of [[fiber integration]] in [[generalized (Eilenberg-Steenrod) cohomology]] requires a choice of [[orientation in generalized cohomology]]. For fiber integration in [[differential cohomology]] this is to be refined to a \emph{differential orientation} . Accordingly, instead of a [[Thom class]] there is a \emph{differential Thom class} . \begin{defn} \label{DifferentialThomCocycle}\hypertarget{DifferentialThomCocycle}{} For $X$ a [[compact space|compact]] [[smooth manifold]] and $V \to X$ a smooth real [[vector bundle]] of [[rank]] $k$ a \textbf{differential Thom cocycle} on $V$ is \begin{itemize}% \item a [[compact support|compactly supported]] [[cocycle]] $\hat \omega$ in the [[ordinary differential cohomology]] of degree $k$ of $V$; \item such that for each $x \in X$ we have \begin{displaymath} \int_{V_x} \omega = \pm 1 \,. \end{displaymath} \end{itemize} \end{defn} \begin{remark} \label{}\hypertarget{}{} The underlying class $[\hat \omega] \in H^{k}_{compact}(V, \mathbb{Z})$ in [[compact support|compactly supported]] [[integral cohomology]] is an ordinary [[Thom class]] for $V$. \end{remark} \begin{defn} \label{DifferentialOrientation}\hypertarget{DifferentialOrientation}{} Let $p : X \to Y$ be a [[smooth function]] of [[smooth manifold]]s. An \textbf{$H \mathbb{Z}_{diff}$-orientation} on $p$ is \begin{enumerate}% \item A factorization through an [[embedding of smooth manifolds]] \begin{displaymath} p : X \hookrightarrow Y \times \mathbb{R}^N \stackrel{}{\to} Y \end{displaymath} for some $N \in \mathbb{N}$; \item a [[tubular neighbourhood]] $W \hookrightarrow Y \times \mathbb{R}^N$ of $X$; \item a differential Thom cocycle, def. \ref{DifferentialThomCocycle}, $U$ on $W \to X$. \end{enumerate} \end{defn} This appears as (\hyperlink{HopkinsSinger}{HopkinsSinger, def. 2.9}). \hypertarget{FiberIntegration}{}\subsubsection*{{Via differential Thom cocycles}}\label{FiberIntegration} Write $H^n_{diff}(-)$ for [[ordinary differential cohomology]]. For any choice of presentation, there is a fairly evident fiber integration of [[compact support|compactly supported]] [[cocycles]] along trivial [[Cartesian space]] bundles $Y \times \mathbb{R}^N \to Y$ over a [[compact space|compact]] $Y$: \begin{displaymath} \int_{\mathbb{R}^N} : H^{n+N}_{diff,cpt}(Y \times \mathbb{R}^n) \to H^n_{diff}(Y) \,. \end{displaymath} \begin{defn} \label{}\hypertarget{}{} Let $X \to Y$ be a [[smooth function]] equipped with differential $H\mathbb{Z}$-orientation $U$, def. \ref{DifferentialOrientation}. Then the corresponding \textbf{fiber integration} of ordinary differential cohomology is the composite \begin{displaymath} \int_{X/Y} : H_{diff}^{n+k}(X) \stackrel{(-)\cup U}{\to} H_{diff, cpt}^{n+N}(X \times \mathbb{R}^N) \stackrel{\int_{\mathbb{R}^N}}{\to} H_{diff}^n(Y) \,. \end{displaymath} \end{defn} This appears as (\hyperlink{HopkinsSinger}{HopkinsSinger, def. 3.11}). \hypertarget{ViaDeligneComplex}{}\subsubsection*{{In terms of Deligne cocycles}}\label{ViaDeligneComplex} We discuss an explicit formula for fiber integration along [[product]]-bundles with [[compact topological space|compact]] [[fibers]] in terms of [[Deligne complex]], following (\hyperlink{GomiTerashima00}{Gomi-Terashima 00}). For $X$ a [[smooth manifold]], write $\mathbf{H}(X, \mathbf{B}^n U(1)_{conn})$ for the [[Deligne complex]] in degree $(n+1)$ over $X$. \begin{defn} \label{GomiFiberIntegration}\hypertarget{GomiFiberIntegration}{} Let $X$ be a [[paracompact topological space|paracompact]] [[smooth manifold]] and let $F$ be a [[compact topological space|compact]] [[smooth manifold]] of [[dimension]] $k$ without [[boundary]]. Then there is a morphism \begin{displaymath} \int_F \;\colon\; \mathbf{H}(X, \mathbf{B}^n U(1)_{conn}) \to \mathbf{H}(X, \mathbf{B}^{n-k} U(1)_{conn}) \end{displaymath} given by (\ldots{}) \end{defn} (\hyperlink{GomiTerashima00}{Gomi-Terashima 00, section 2, corollary 3.2}) \hypertarget{ViaSmoothHomotopyType}{}\subsubsection*{{In terms of smooth homotopy types}}\label{ViaSmoothHomotopyType} The \hyperlink{ViaDeligneComplex}{above} formulation of fiber integration in ordinary differential cohomology serves as a presentation for a more abstract construction in [[smooth infinity-groupoid|smooth homotopy theory]]. Let $\mathbf{H} \coloneqq$ [[Smooth∞Grpd]] be the ambient [[cohesive (∞,1)-topos]] of [[smooth ∞-groupoids]]/smooth [[∞-stacks]]. As discussed there, the [[Deligne complex]], being a [[sheaf]] of [[chain complexes]] of [[abelian groups]], presents under the [[Dold-Kan correspondence]] a [[simplicial presheaf]] on the [[site]] [[CartSp]], which in turn presents an object \begin{displaymath} \mathbf{B}^n U(1)_{conn} \in \mathbf{H} \,, \end{displaymath} discussed \emph{\href{http://nlab.mathforge.org/nlab/show/cohesive+%28infinity%2C1%29-topos+--+structures#DifferentialCohomology}{here}}: the smooth [[moduli ∞-stack]] of [[circle n-bundles with connection]]. Let now $\Sigma_k$ be a [[compact topological space|compact]] [[smooth manifold]] of [[dimension]] $k \in \mathbb{N}$ without [[boundary]]. There is the \href{infinity,1%29-topos#ClosedMonoidalStructure}{internal hom in an (infinity,1)-topos} \begin{displaymath} [\Sigma_k, \mathbf{B}^n U(1)_{conn}] \in \mathbf{H} \,, \end{displaymath} which is the smooth moduli $n$-stack of circle $n$-connections \emph{on} $\Sigma_k$. \begin{prop} \label{}\hypertarget{}{} For all $k \leq n$ there is a natural morphism \begin{displaymath} \exp(2\pi i\int_\Sigma(-)) \; \colon \; [\Sigma_k, \mathbf{B}^n U(1)_{conn}] \to \mathbf{B}^{n-k} U(1)_{conn} \;\;\; \in \mathbf{H} \,. \end{displaymath} which for $U \in$ [[SmthMfd]] a smooth test manifold sends $n$-connections on $\Sigma_k$ on $U \times \Sigma_k$ to the $(n-k)$-connection on $U$ which is their fiber integration over $\Sigma_k$. \end{prop} (\hyperlink{FiorenzaSatiSchreiber12}{Fiorenza-Sati-Schreiber 12}) \begin{proof} To see this, observe that \begin{enumerate}% \item by definition $\mathbf{H}(U, [\Sigma_k, \mathbf{B}^n U(1)_{conn}]) \simeq \mathbf{H}(U \times \Sigma_k, \mathbf{B}^n U(1)_{conn})$; \item if $\{U_i \to \Sigma_k\}$ is a fixed [[good open cover]] of $\Sigma_k$, then $\{U \times U_i \to U \times \Sigma_k\}$ is also a good open cover, for every $U \in$ [[CartSp]]; \item hence the [[Cech nerve]] $C(\{U \times U_i\})$ is a natural (functorial in $U \in CartSp$) [[cofibrant object]] [[resolution]] of $U \times \Sigma_k$ in the projective local [[model structure on simplicial presheaves]] $[CartSp^{op}, sSet]_{proj,loc}$ which [[presentable (infinity,1)-category|presents]] $\mathbf{H} =$[[Smooth∞Grpd]] (as discussed there); \item the (image under the [[Dold-Kan correspondence]]) of the [[Deligne complex]] $\mathbb{Z}(n+1)^\infty_D$ is a is fibrant in this model structure (since every circle $n$-bundle is trivializable over a [[contractible topological space|contractible space]] $U \in$ [[CartSp]]). \end{enumerate} This means that a presentation of $[\Sigma_k, \mathbf{B}^n U(1)_{conn}]$ by an object of $[CartSp^{op}, sSet]_{proj,loc}$ is given by the [[simplicial presheaf]] \begin{displaymath} U \mapsto DK \mathbb{Z}(n+1)^\infty_D(C(\{U \times U_i\})) \end{displaymath} that sends $U$ to the [[Cech cohomology|Cech]]-[[Deligne complex|Deligne]] [[hypercohomology]] [[chain complex]] with respect to the cover $\{U \times U_i \to U \times \Sigma_k\}$. On this def. \ref{GomiFiberIntegration} provides a morphism of simplicial sets \begin{displaymath} DK \mathbb{Z}(n+1)^\infty_D(C(\{U \times U_i\})) \to DK \mathbb{Z}(n+1)^\infty_D(U) \end{displaymath} which one directly sees is natural in $U$, hence extends to a morphism of simplicial presheaves, which in turn presents the desired morphism in $\mathbf{H}$. \end{proof} Applications are to \begin{itemize}% \item [[transgression]] \item [[double dimensional reduction]] \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{general}{}\subsubsection*{{General}}\label{general} (\ldots{}) \hypertarget{abstract_formulation}{}\subsubsection*{{Abstract formulation}}\label{abstract_formulation} At least the fiber integration all the way to the point exists on general grounds for the in any [[cohesive (∞,1)-topos]]: the general abstract formulation is in the section \emph{} and the implementation in [[smooth ∞-groupoid]]s is in the section \emph{} . \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{CSInHigherCodimension}{}\subsubsection*{{$\infty$-Chern-Simons functionals in higher codimension}}\label{CSInHigherCodimension} (\ldots{}) Differential universal characteristic class / extended $\infty$-Chern-Simons Lagrangian: \begin{displaymath} \hat \mathbf{c} : \mathbf{B}G_{conn} \to \mathbf{B}^{n}U(1)_{conn} \end{displaymath} moduli $\infty$-stack of [[higher gauge fields]] on a given $\Sigma_k$: \begin{displaymath} [\Sigma_k, \mathbf{B}G_{conn}] \in \mathbf{H} \end{displaymath} Lagrangian of $\hat \mathbf{c}$-Chern-Simons theory: \begin{displaymath} [\Sigma_k, \hat \mathbf{c}] : [\Sigma_k, \mathbf{B}G_{conn}] \to [\Sigma_k, \mathbf{B}^n U(1)_{conn}] \end{displaymath} extended action functional of $\hat \mathbf{c}$-Chern-Simons theory in codimension $(n-k)$ \begin{displaymath} \exp(2 \pi i \int_{\Sigma_k} [\Sigma_k, \hat \mathbf{c}] ) : [\Sigma_k, \mathbf{B}G_{conn}] \stackrel{[\Sigma_k, \hat \mathbf{c}]}{\to} [\Sigma_k, \mathbf{B}^n U(1)_{conn}] \stackrel{\exp(2 \pi i\int_{\Sigma_k} (-))}{\to} \mathbf{B}^{n-k} U(1)_{conn} \,. \end{displaymath} (\ldots{}) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[higher parallel transport]], [[higher holonomy]] \item [[fiber integration in differential K-theory]] \end{itemize} \hypertarget{References}{}\subsection*{{References}}\label{References} A discussion in the general sense of [[fiber integration]] in [[generalized (Eilenberg-Steenrod) cohomology]] is in section 3.4 of \begin{itemize}% \item [[Mike Hopkins]], [[Isadore Singer]], \emph{[[Quadratic Functions in Geometry, Topology,and M-Theory]]} \end{itemize} and around prop. 2.1 (in the context of [[Chern-Simons theory]]) in \begin{itemize}% \item [[Daniel Freed]], \emph{Classical Chern-Simons theory} II. Special issue for S. S. Chern. Houston J. Math. 28 (2002), no. 2, 293--310. \end{itemize} Explicit formulas for fiber integration of \emph{cocycles} in [[Cech cohomology|Cech]]-[[Deligne cohomology]] are given in \begin{itemize}% \item [[Kiyonori Gomi]] and Yuji Terashima, \emph{A Fiber Integration Formula for the Smooth Deligne Cohomology} International Mathematics Research Notices 2000, No. 13 (\href{http://imrn.oxfordjournals.org/content/2000/13/699.full.pdf}{pdf}, \href{http://numr.wdfiles.com/local--files/differential-cohomology/gomi-terashima.pdf}{pdf}) \end{itemize} and their generalization from [[higher holonomy]] to [[higher parallel transport]] in \begin{itemize}% \item [[Kiyonori Gomi]] and Yuji Terashima, \emph{Higher dimensional parallel transport} Mathematical Research Letters 8, 25--33 (2001) (\href{http://intlpress.com/_newsite/site/pub/files/_fulltext/journals/mrl/2001/0008/0001/MRL-2001-0008-0001-A-004.pdf}{pdf}) \end{itemize} and \begin{itemize}% \item David Lipsky, \emph{Cocycle constructions for topological field theories} (2010) ([[LipskyThesis.pdf:file]]) \end{itemize} See also \begin{itemize}% \item [[Johan Dupont]], Rune Ljungmann, \emph{Integration of simplicial forms and Deligne cohomology} Math. Scand. 97 (2005), 11--39 (\href{http://www.mscand.dk/article.php?id=897}{pdf}) \end{itemize} The observation that the construction in \hyperlink{GomiTerashima00}{Gomi-Terashima 00} induces refines to [[smooth infinity-groupoid|smooth]] [[moduli infinity-stack|higher moduli stacks]] is discussed in \begin{itemize}% \item [[Domenico Fiorenza]], [[Hisham Sati]], [[Urs Schreiber]], \emph{[[schreiber:Extended higher cup-product Chern-Simons theories]]}, Journal of Geometry and Physics Volume 74, 2013, Pages 130--163 (\href{http://arxiv.org/abs/1207.5449}{arXiv:1207.5449}) \end{itemize} for the case without boundary and for the general case in \begin{itemize}% \item [[Urs Schreiber]] et al. \emph{[[schreiber:Local prequantum field theory]]}. \end{itemize} [[!redirects differential Thom class]] [[!redirects integration in ordinary differential cohomology]] \end{document}