\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{fibrations of quasi-categories} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{$(\infty,1)$-Category theory}}\label{category_theory} [[!include quasi-category theory contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{trivial_fibration}{Trivial fibration}\dotfill \pageref*{trivial_fibration} \linebreak \noindent\hyperlink{kan_fibration}{Kan fibration}\dotfill \pageref*{kan_fibration} \linebreak \noindent\hyperlink{leftright_fibration}{(Left/)Right fibration}\dotfill \pageref*{leftright_fibration} \linebreak \noindent\hyperlink{cocartesian_fibration}{(co)Cartesian fibration}\dotfill \pageref*{cocartesian_fibration} \linebreak \noindent\hyperlink{categorical_fibration}{Categorical fibration}\dotfill \pageref*{categorical_fibration} \linebreak \noindent\hyperlink{inner_fibration}{Inner fibration}\dotfill \pageref*{inner_fibration} \linebreak \noindent\hyperlink{minimal_fibration}{Minimal fibration}\dotfill \pageref*{minimal_fibration} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{trivial_fibration_2}{Trivial fibration}\dotfill \pageref*{trivial_fibration_2} \linebreak \noindent\hyperlink{kan_fibration_2}{Kan fibration}\dotfill \pageref*{kan_fibration_2} \linebreak \noindent\hyperlink{leftright_fibration_2}{(Left/)Right fibration}\dotfill \pageref*{leftright_fibration_2} \linebreak \noindent\hyperlink{homotopy_lifting_property}{Homotopy lifting property}\dotfill \pageref*{homotopy_lifting_property} \linebreak \noindent\hyperlink{as_fibrations_in_groupoids}{As fibrations in $\infty$-groupoids}\dotfill \pageref*{as_fibrations_in_groupoids} \linebreak \noindent\hyperlink{PropRightAnodyne}{(Left/)Right anodyne moprphisms}\dotfill \pageref*{PropRightAnodyne} \linebreak \noindent\hyperlink{cocartesian_fibration_2}{(co)Cartesian fibration}\dotfill \pageref*{cocartesian_fibration_2} \linebreak \noindent\hyperlink{categorical_fibration_2}{Categorical fibration}\dotfill \pageref*{categorical_fibration_2} \linebreak \noindent\hyperlink{inner_fibrations}{Inner fibrations}\dotfill \pageref*{inner_fibrations} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For ordinary [[categories]] there is the notion of \begin{itemize}% \item [[Grothendieck fibration]] between two categories. \item and the special case of a [[category fibered in groupoids]]. \end{itemize} The analog of this for [[quasi-categories]] are \begin{itemize}% \item [[Cartesian fibrations]] \item [[left fibrations]]/[[right fibrations]] of quasi-categories. \end{itemize} There are more types of fibrations between the [[simplicial sets]] underlying the [[quasi-category]] \begin{itemize}% \item [[inner fibrations]] -- these correspond to \textbf{bundles of [[quasi-categories]]} : an inner fibration $E \to \Delta[1]$ over the interval is the quasi-categorical analog of a [[cograph of a profunctor]]: it characterizes the fibers $C, D$ over the endpoints $0,1 \in \Delta[1]$ as [[quasi-categories]]. Notably having an inner fibration $C \to \Delta[0]$ over the point says precisely that $C$ is a [[quasi-category]]. \item categorical fibrations -- these appear as the fibrations in the sense of [[model category]] theory in the Joyal [[model structure for quasi-categories]] $sSet_{Joyal}$ . But they have no particular intrinsic meaning in [[higher category theory]]. In fact, there is also the [[model structure on marked simplicial over-sets|model structure on marked simplicial sets]] which is [[Quillen equivalence|Quillen equivalent]] to $sSet_{Joyal}$ and in which the model-theoretic fibrations coincide precisely with the [[Cartesian fibration]]s that do have an intrinsic category theoretic meaning. \item [[minimal Joyal fibrations]] \end{itemize} \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} We list the different definitions in the order of their generality. The examples of each definition are also examples of the following definitions. All morphisms in the following are morphisms of [[simplicial set]]s. \hypertarget{trivial_fibration}{}\subsubsection*{{Trivial fibration}}\label{trivial_fibration} A \textbf{trivial fibration} (trivial [[Kan fibration]]) is a morphism that has the [[right lifting property]] with respect to the boundary inclusions $\partial \Delta[n] \hookrightarrow \Delta[n], n \geq 1$. \hypertarget{kan_fibration}{}\subsubsection*{{Kan fibration}}\label{kan_fibration} \begin{itemize}% \item for the moment see [[Kan fibration]] \end{itemize} A morphism with [[left lifting property]] against all Kan fibrations is called \textbf{anodyne}. \hypertarget{leftright_fibration}{}\subsubsection*{{(Left/)Right fibration}}\label{leftright_fibration} A [[morphism]] of [[simplicial set]]s $f : X \to S$ is a \textbf{left fibration} or \textbf{[[left Kan fibration]]} if it has the [[right lifting property]] with respect to all [[horn]] inclusions except the right outer ones. It is a \textbf{right fibration} or \textbf{right Kan fibration} if its extends against all horns except the left outer ones. \begin{displaymath} \itexarray{ \Lambda[n]_{k \gt 0} &\to& X \\ \downarrow &{}^{\exists}\nearrow& \downarrow \\ \Delta[n] &\to& S } \,. \end{displaymath} Morphisms with the [[left lifting property]] against all left/right fibrations are called \textbf{left/right [[anodyne morphism]]} maps. Write \begin{displaymath} RFib(S) \subset sSet/S \end{displaymath} for the full [[SSet]]-[[subcategory]] of the [[overcategory]] of [[SSet]] over $S$ on those morphisms that are right fibrations. This is a [[Kan complex]]-enriched category and as such an incarnation of the \textbf{[[(∞,1)-category]] of right fibrations}. It is modeled by the [[model structure for left fibrations|model structure for right fibrations]]. For details on this see the discussion at [[(∞,1)-Grothendieck construction]]. \hypertarget{cocartesian_fibration}{}\subsubsection*{{(co)Cartesian fibration}}\label{cocartesian_fibration} A [[Cartesian fibration]] is an [[inner fibration]] $p : X \to S$ such that \begin{itemize}% \item for every edge $f : X \to Y$ of $S$ \item and every lift $\tilde{y}$ of $y$ (that is, $p(\tilde{y})=y$), \end{itemize} there is a [[cartesian morphism|Cartesian edge]] $\tilde{f} : \tilde{x} \to \tilde{y}$ in $X$ lifting $f$. (HTT, def 2.4.2.1) see also \begin{itemize}% \item [[model structure for Cartesian fibrations]] \item [[(∞,1)-Grothendieck construction]] \end{itemize} \hypertarget{categorical_fibration}{}\subsubsection*{{Categorical fibration}}\label{categorical_fibration} A \textbf{categorical fibration} is a fibration in the [[model structure for quasi-categories]]: morphism $f : X \to S$ with the [[right lifting property]] against all monomorphic \emph{categorical equivalences} . (HTT, p. 81). \hypertarget{inner_fibration}{}\subsubsection*{{Inner fibration}}\label{inner_fibration} A [[morphism]] of [[simplicial set]]s $f : X \to S$ is an \textbf{inner fibration} or \textbf{[[inner Kan fibration]]} if its has the [[right lifting property]] with respect to all inner [[horn]] inclusions. The morphisms with the [[left lifting property]] against all inner fibrations are called \textbf{inner anodyne}. \hypertarget{minimal_fibration}{}\paragraph*{{Minimal fibration}}\label{minimal_fibration} \begin{itemize}% \item [[minimal Kan fibration]] \item [[minimal Joyal fibration]] \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{remark} \label{}\hypertarget{}{} By the [[small object argument]] we have that every morphism $f : X \to Y$ of simplicial sets may be factored as \begin{displaymath} f : X \to Z \to Y \end{displaymath} with $X \to Z$ a left/right/inner anodyne cofibration and $Z \to Y$ accordingly a left/right/inner Kan fibration. \end{remark} \hypertarget{trivial_fibration_2}{}\subsubsection*{{Trivial fibration}}\label{trivial_fibration_2} \ldots{} \hypertarget{kan_fibration_2}{}\subsubsection*{{Kan fibration}}\label{kan_fibration_2} \ldots{} \hypertarget{leftright_fibration_2}{}\subsubsection*{{(Left/)Right fibration}}\label{leftright_fibration_2} \begin{remark} \label{}\hypertarget{}{} Under the operation of forming the [[opposite quasi-category]], left fibrations turn into right fibrations, and vice versa: if $p : C \to D$ is a left fibration then $p^{op} : C^{op} \to D^{op}$ is a right fibration. Therefore it is sufficient to list properties of only one type of these fibrations, that for the other follows. \end{remark} \hypertarget{homotopy_lifting_property}{}\paragraph*{{Homotopy lifting property}}\label{homotopy_lifting_property} In classical [[homotopy theory]], a continuous map $p : E \to B$ of [[topological spaces]] is said to have the [[homotopy lifting property]] if it has the [[right lifting property]] with respect to all morphisms $Y \stackrel{(Id, 0)}{\to} Y \times I$ for $I = [0,1]$ the standard [[interval]] and every commuting diagram \begin{displaymath} \itexarray{ Y &\to& E \\ \downarrow && \downarrow \\ Y \times I &\to& B } \end{displaymath} there exists a lift $\sigma : Y \times I \to E$ making the two triangles \begin{displaymath} \itexarray{ Y &\to& E \\ \downarrow &{}^\sigma\nearrow& \downarrow \\ Y \times I &\to& B } \end{displaymath} commute. For $Y = *$ the [[point]] this can be rephrased as saying that the universal morphism $E^I \to B^I \times_B E$ induced by the commuting square commuting square \begin{displaymath} \itexarray{ E^I &\to& E \\ \downarrow && \downarrow \\ B^I &\to& B } \end{displaymath} is an [[epimorphism]]. If it is even an [[isomorphism]] then the lift $\sigma$ exists \emph{uniquely} . This is the situation that the following proposition generalizes: \begin{prop} \label{}\hypertarget{}{} A morphism $p : X \to S$ of simplicial sets is a left fibration precisely if the canonical morphism \begin{displaymath} X^{\Delta[1]} \to X^{\{0\}} \times_{S^{\{0\}}} S^{\Delta^1} \end{displaymath} is a trivial Kan fibration. \end{prop} \begin{proof} This is a corollary of the characterization of left anodyne morphisms in \hyperlink{PropRightAnodyne}{Properties of left anodyne maps} by [[Andre Joyal]], recalled in [[Higher Topos Theory|HTT, corollary 2.1.2.10]]. \end{proof} \hypertarget{as_fibrations_in_groupoids}{}\paragraph*{{As fibrations in $\infty$-groupoids}}\label{as_fibrations_in_groupoids} The notion of right fibration of quasi-categories generalizes the notion of [[category fibered in groupoids]]. This follows from the following properties. \begin{prop} \label{}\hypertarget{}{} For $C \to *$ a right (left) fibration over the [[point]], $C$ is a [[Kan complex]], i.e. an [[∞-groupoid]]. \end{prop} \begin{proof} Due to [[Andre Joyal]]. Recalled at [[Higher Topos Theory|HTT, prop. 1.2.5.1]]. \end{proof} \begin{prop} \label{}\hypertarget{}{} Right (left) fibrations are preserved by [[pullback]] in [[sSet]]. \end{prop} \begin{corollary} \label{}\hypertarget{}{} It follows that the fiber $X_c$ of every right fibration $X \to C$ over every point $c \in C$, i.e. the [[pullback]] \begin{displaymath} \itexarray{ X_c &\to& X \\ \downarrow && \downarrow \\ \{c\} &\to& C } \end{displaymath} is a [[Kan complex]]. \end{corollary} \begin{prop} \label{}\hypertarget{}{} For $C$ and $D$ quasi-categories that are ordinary [[categories]] (i.e. simplicial sets that are [[nerve]]s of ordinary categories), a morphism $C \to D$ is a right fibration precisely if the correspunding ordinary [[functor]] exhibits $C$ as a [[category fibered in groupoids]] over $D$. \end{prop} \begin{proof} This is [[Higher Topos Theory|HTT, prop. 2.1.1.3]]. \end{proof} A canonical class of examples of a [[fibered category]] is the [[codomain fibration]]. This is actually a [[bifibration]]. For an ordinary category, a bifiber of this is just a set. For an $(\infty,1)$-category it is an $\infty$-groupoid. Hence fixing only one fiber of the bifibration should yield a fibration in $\infty$-groupoids. This is asserted by the following statement. \begin{prop} \label{}\hypertarget{}{} Let $p : K \to C$ be an arbitrary morphism to a [[quasi-category]] $C$ and let $C_{p/}$ be the corresponding [[over quasi-category|under quasi-category]]. Then the canonical projection $C_{p/} \to C$ is a left fibration. \end{prop} \begin{proof} Due to [[Andre Joyal]]. Recalled as [[Higher Topos Theory|HTT, prop 2.1.2.2]]. \end{proof} \hypertarget{PropRightAnodyne}{}\paragraph*{{(Left/)Right anodyne moprphisms}}\label{PropRightAnodyne} \begin{prop} \label{}\hypertarget{}{} The collection of left anodyne morphisms (those with [[left lifting property]] against left fibrations) is equivalently $LAn = LLP(RLP(LAn_0))$ for the following choices of $LAn_0$: $LAn_0 =$ \begin{itemize}% \item the collection of all left [[horn]] inclusions $\{ \Lambda[n]_{i} \to \Delta[n] | 0 \leq i \lt n \}$; \item blah-blah \item blah-blah \end{itemize} \end{prop} \begin{proof} This is due to [[Andre Joyal]], recalled as [[Higher Topos Theory|HTT, prop 2.1.2.6]]. \end{proof} \hypertarget{cocartesian_fibration_2}{}\subsubsection*{{(co)Cartesian fibration}}\label{cocartesian_fibration_2} \hypertarget{categorical_fibration_2}{}\subsubsection*{{Categorical fibration}}\label{categorical_fibration_2} \hypertarget{inner_fibrations}{}\subsubsection*{{Inner fibrations}}\label{inner_fibrations} \begin{prop} \label{}\hypertarget{}{} A [[simplicial set]] $K$ is the [[nerve]] of an ordinary [[category]] $C$, $K \simeq_{iso} N(C)$ precisely if the terminal morphism $K \to \Delta[0]$ is an inner fibration with \emph{unique} inner [[horn]] fillers, i.e. precisely if for all morphisms \begin{displaymath} \Lambda[n]_i \to K \end{displaymath} with $n \in \mathbb{N}$ and $0 \lt i \lt n$ there is a \emph{unique} morphism $\Delta[n] \to K$ making the diagram \begin{displaymath} \itexarray{ \Lambda[n]_i &\to& K \\ \downarrow & \nearrow \\ \Delta[n] } \end{displaymath} commute. \end{prop} \begin{proof} This is [[Higher Topos Theory|HTT, prop. 1.1.2.2]] \end{proof} \begin{corollary} \label{}\hypertarget{}{} It follows that under the [[nerve]] \emph{every} functor $f : C \to D$ between ordinary [[categories]] is an inner fibration. \end{corollary} \begin{proof} This is immediate, but let's spell it out: In any commutative diagram \begin{displaymath} \itexarray{ \Lambda[n] &\to& N(C) \\ \downarrow && \downarrow^{\mathrlap{N(f)}} \\ \Delta[n] && \to& N(D) } \end{displaymath} by the above the bottom morphism is already uniquely specified by the remaining diagram. \begin{displaymath} \itexarray{ \Lambda[n] &\to& N(C) \\ \downarrow && \downarrow^{\mathrlap{N(f)}} \\ \Delta[n] && N(D) } \,. \end{displaymath} By the above there exists a unique lift into $N(C)$ \begin{displaymath} \itexarray{ \Lambda[n] &\to& N(C) \\ \downarrow &\nearrow& \downarrow^{\mathrlap{N(f)}} \\ \Delta[n] && N(D) } \end{displaymath} and by uniqueness of lifts into $N(D)$ this must also make the lower square commute \begin{displaymath} \itexarray{ \Lambda[n] &\to& N(C) \\ \downarrow &\nearrow& \downarrow^{\mathrlap{N(f)}} \\ \Delta[n] &\to& N(D) } \,. \end{displaymath} \end{proof} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Jacob Lurie]], chapter 2 of \emph{[[Higher Topos Theory]]} \item [[David Ayala]] and [[John Francis]], \emph{Fibrations of ∞-categories}, (\href{https://arxiv.org/abs/1702.02681}{arxiv:1702.02681}) \item [[Clark Barwick]], [[Jay Shah]], \emph{Fibrations in ∞-category theory}, (\href{https://arxiv.org/abs/1607.04343}{arXiv:1607.04343}) \end{itemize} [[!redirects fibration of quasi-categories]] [[!redirects fibrations of quasi-categories]] [[!redirects fibration of simplicial sets]] [[!redirects fibrations of simplicial sets]] [[!redirects weak fibration]] [[!redirects weak fibrations]] [[!redirects fibration of quasi-categories]] \end{document}