\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{field} \begin{quote}% This entry is about the notion in [[algebra]]. For the different concept of the same name in [[differential geometry]] see at \emph{[[vector field]]} and in [[physics]] see at \emph{[[field (physics)]]}. \end{quote} \vspace{.5em} \hrule \vspace{.5em} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{linear_algebra}{}\paragraph*{{Linear algebra}}\label{linear_algebra} [[!include homotopy - contents]] \hypertarget{algebra}{}\paragraph*{{Algebra}}\label{algebra} [[!include higher algebra - contents]] \hypertarget{fields}{}\section*{{Fields}}\label{fields} \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{constructive}{Constructive notions}\dotfill \pageref*{constructive} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{category}{Category of fields}\dotfill \pageref*{category} \linebreak \noindent\hyperlink{AccSketch}{Accessibility and sketchability}\dotfill \pageref*{AccSketch} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} Classically: \begin{defn} \label{classical}\hypertarget{classical}{} A \textbf{field} is a [[commutative ring]] in which every nonzero element has a multiplicative [[inverse]] and $0 \neq 1$ (which may be combined as: an element is invertible if and only if it is nonzero). \end{defn} Fields are studied in \emph{field theory}, which is a branch of [[commutative algebra]]. If we omit the commutativity axiom, then the result is a [[skewfield]] or [[division ring]] (also in some contexts simply called a ``field''). For example, the [[free field (algebra)|free field]] of Cohn and Amitsur is in fact noncommutative. \hypertarget{constructive}{}\subsubsection*{{Constructive notions}}\label{constructive} Fields are (arguably) not a purely [[algebra|algebraic]] notion in that they don't form an [[algebraic category]] (see \hyperlink{category}{discussion below}). For this reason, it should be unsurprising that in [[constructive mathematics]] (including the [[internal logic]] of a [[topos]]) there are different inequivalent ways to define a field. In this case the classical definition is not usually the best one; for instance, the real numbers do not satisfy it. There are several potential replacements with their own advantages and disadvantages. \begin{defn} \label{discrete}\hypertarget{discrete}{} If we replace ``an element is invertible iff it is nonzero'' in Definition \ref{classical} by ``an element is invertible [[xor]] it equals zero'' (which is equivalent in [[classical logic]] but stronger in [[constructive logic]]), then we obtain the notion of \textbf{discrete field}. In addition to $0\neq 1$, this condition means that every element is either $0$ or invertible. \end{defn} Such a field $F$ is `discrete' in that it decomposes as a coproduct $F = \{0\} \sqcup F^\times$ (where $F^\times$ is the subset of invertible elements). An advantage is that this is a [[coherent logic|coherent theory]] and hence also a [[geometric theory]]; for this reason \hyperlink{Johnstone77}{Johnstone} calls such fields \textbf{geometric fields}. A disadvantage is that this axiom is not satisfied (constructively) by the ring of [[real numbers]] (however these are defined), although it is satisfied by the ring of [[rational number|rational]] (or even [[algebraic number|algebraic]]) numbers and by the [[finite field]]s as usual. \begin{defn} \label{heyting}\hypertarget{heyting}{} If we interpret `nonzero' in Definition \ref{classical} as a reference to a [[tight apartness relation]], thus defining the apartness relation $\#$ by $x # y$ iff $x - y$ is invertible, then we obtain the notion of \textbf{Heyting field}. (As shown \href{/nlab/show/local+ring#internal}{here}, the ring operations become strongly extensional functions.) In addition to $0\# 1$, the condition then means that every element apart from $0$ is invertible. \end{defn} This is how `practising' constructive analysts of the Bishop school usually define the simple word `field'. An advantage is that the (located Dedekind) [[real numbers]] form a Heyting field, although (for example) the (less located) [[MacNeille real number]]s need not form a Heyting field; another disadvantage is that this is not a coherent axiom and so cannot be [[internalization|internalized]] in as many categories. \begin{defn} \label{}\hypertarget{}{} If we replace ``an element is invertible iff it is nonzero'' in Definition \ref{classical} by ``an element is noninvertible iff it is zero'' (which is equivalent in [[classical logic]] but incomparable in [[constructive logic]]), we obtain the notion of \textbf{residue field} (which is not quite the same as the [[residue fields]] of [[algebraic geometry]]). In addition to $0\neq 1$, this condition means that every noninvertible element (i.e. element $x$ such that $x y\neq 1$ for all $y$) is zero. \end{defn} An advantage is that even more versions of the [[real numbers]] (including the [[MacNeille real number]]s) form a residue field; disadvantages are that this axiom is not coherent either and that a residue field lacks an [[apartness relation]] (in particular, the MacNeille reals have no apartness). Every discrete field is also a Heyting field, and every Heyting field is also a residue field. A Heyting or residue field is a discrete field if and only if [[decidable equality|equality is decidable]]; it is in this sense that a discrete field is `discrete'. A residue field is a Heyting field if and only if it is a [[local ring]]. Furthermore, the quotient ring (or `residue ring') of any local ring by its ideal of noninvertible elements is a Heyting field; in particular, it is a [[residue field]]. On the other hand, not every residue field is even a local ring (the MacNeille reals are not), so not every residue field is the residue ring of any local ring. The name ``residue field'' comes from the fact that these fields are precisely the residue rings of \emph{weak local rings} (rings in which the noninvertible elements form an ideal). Counterexamples were remarked above, but to be explicit: The (located Dedekind) [[real numbers]] form a Heyting field which need not be discrete. The [[MacNeille real number]]s form a residue field which need not be Heyting; see section D4.7 of \emph{[[Elephant|Sketches of an Elephant]]}. The three definitions above do not exhaust the possible constructive notions of field. For instance, in \hyperlink{MRR87}{MRR87} the unadorned word \textbf{field} is defined like a Heyting field above, but with $\#$ being an arbitrary [[inequality relation]] rather than a tight apartness. If the inequality is the [[denial inequality]], this reproduces the original classical definition, which in \hyperlink{Johnstone77}{Johnstone77} is called a \textbf{field of fractions} since they are precisely the fields of fractions of ``weak [[integral domains]]'' (defined as rings in which the product of two nonzero elements is nonzero). In \hyperlink{MRR87}{MRR87} a \textbf{denial field} is defined to be a field of fractions in which additionally $(0)$ is a [[prime ideal]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{category}{}\subsubsection*{{Category of fields}}\label{category} Fields are not as well-behaved [[category theory|categorically]] as most other common algebraic structures ([[groups]], [[rings]], [[modules]], etc.). In particular, the [[category]] of fields and field homomorphisms (a [[full subcategory]] of the category of [[rings]]) is not [[complete category|complete]] or [[cocomplete category|cocomplete]], although it is [[accessible category|accessible]]. In particular, it lacks a terminal object and also lacks an initial object (though it has a [[weakly initial set]], namely the set of [[prime field]]s). In particular, it is therefore not [[algebraic category|algebraic]] or [[locally presentable category|locally presentable]]. \hypertarget{AccSketch}{}\subsubsection*{{Accessibility and sketchability}}\label{AccSketch} The [[category]] of fields is [[accessible category|accessible]], even \emph{finitely} accessible, and therefore can be presented as the category of models (in [[Set]]) of a mixed limit-colimit [[sketch]]. It is moreover straightforward to write down such a sketch. We suppose as given to start with a [[limit sketch]] whose models are [[commutative rings]], with $F$ denoting the ring. We can construct via limit constructions a subobject $I\hookrightarrow F$ consisting of the invertible elements, as the equalizer of the two maps \begin{displaymath} F \times F \;\rightrightarrows\; F, \end{displaymath} the first being given by multiplication and the second by the composite $F\times F \to * \overset{1}{\to} F$, where $*$ is terminal and the map labeled ``1'' picks out the element $1\in F$. We now assert that if we take the pullback \begin{displaymath} \itexarray{P & \overset{}{\to} & * \\ \downarrow && \downarrow^0\\ I& \hookrightarrow & F,} \end{displaymath} where the map labeled ``0'' picks out the element $0\in F$, then the object $P$ is initial (i.e. $0$ is not invertible, or equivalently not equal to $1$), and moreover the pullback is also a pushout (i.e. every element of $F$ is either $0$ or invertible). Of course, in making these last two assertions we use the fact that we are allowing ourselves a limit-colimit sketch instead of just a limit sketch. Note that this gives us the notion of \emph{discrete} field (see the \hyperlink{constructive}{constructive definitions} above). The other constructive notions of field can also be described as models for different limit-colimit sketches. \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} \begin{example} \label{}\hypertarget{}{} There are the fields of: \begin{itemize}% \item [[rational numbers]], \item [[algebraic numbers]], \item [[real numbers]], \item [[complex numbers]], \item [[p-adic numbers]] (for $p$ a [[prime number]]). \item Also the various [[finite fields]]. \end{itemize} \end{example} \begin{example} \label{}\hypertarget{}{} The canonical [[ring object|local ring object]] of the [[Zariski site|gros Zariski topos]] of any [[scheme]] (given by $S \mapsto \Gamma(S, \mathcal{O}_S)$, that is to say, the affine line $\mathbb{A}^{1}_{S}$) is in fact moreover a field object, where the latter is defined by requiring that Definition \ref{classical} holds in the internal logic of this topos. For a proof, see Proposition 2.2 in the article \href{http://www.sciencedirect.com/science/article/pii/0022404976900025}{Universal projective geometry via topos theory} of Anders Kock. The ring $\mathcal{O}_X$ (the [[structure sheaf]]) in the [[category of sheaves|sheaf topos]] (i.e. the petit Zariski topos) is a [[residue field]] if $X$ is a [[reduced scheme|reduced]] scheme. \end{example} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[division ring]] \item [[subfield]] \item [[ring]] \item [[finite field]], \item [[residue field]] \item [[global field]] \begin{itemize}% \item [[number field]] \item [[function field]] (over a finite field) \end{itemize} \item [[positive characteristic]] \item [[topological field]] \item [[field with one element]] \item [[graded field]] \item [[infinity-field]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Ray Mines]], [[Fred Richman]], [[Wim Ruitenburg]]. \emph{A Course in Constructive Algebra}. Springer, 1987. \item [[Peter Johnstone]], [[Sketches of an Elephant]], Part D. The [[classifying topos]] for fields is discussed in section D3.1.11(b). \item [[Peter Johnstone]], \emph{Rings, Fields, and Spectra}, Journal of Algebra \textbf{49} (1977) pp 238-260. doi:\href{https://doi.org/10.1016/0021-8693%2877%2990284-8}{10.1016/0021-8693(77)90284-8} \item [[Olivia Caramello]], [[Peter Johnstone]], \emph{De Morgan's law and the theory of fields} (\href{http://arxiv.org/abs/0808.1972}{arXiv:0808.1972}) \end{itemize} [[!redirects field]] [[!redirects fields]] [[!redirects discrete field]] [[!redirects discrete fields]] [[!redirects Heyting field]] [[!redirects Heyting fields]] [[!redirects heyting field]] [[!redirects heyting fields]] \end{document}