\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{filtered limit} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{limits_and_colimits}{}\paragraph*{{Limits and colimits}}\label{limits_and_colimits} [[!include infinity-limits - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{Properties}{Properties}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{commutation_with_small_limits}{Commutation with $\kappa$-small limits}\dotfill \pageref*{commutation_with_small_limits} \linebreak \noindent\hyperlink{flat_functors_and_points_of_presheaf_toposes}{Flat functors and points of presheaf toposes}\dotfill \pageref*{flat_functors_and_points_of_presheaf_toposes} \linebreak \noindent\hyperlink{description_in_set_grp_top_and_alike}{Description in Set, Grp, Top and alike}\dotfill \pageref*{description_in_set_grp_top_and_alike} \linebreak \noindent\hyperlink{more}{More}\dotfill \pageref*{more} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Most of the earliest instances of [[limits]] and [[colimits]] used in mathematics were for [[diagrams]] indexed by the [[partially ordered set]] of [[natural numbers]], which we now call \emph{[[sequential limit|sequential]] (co)limits}. Many of the nice features of these (co)limits apply more generally to \emph{[[codirected limits]]} and \emph{[[directed colimits]]}, where the indexing category is a (co)-[[directed set]] (much as [[sequences]] in [[topology]] generalise fruitfully to [[nets]]). A \emph{filtered (co)limit} is a further generalisation of this, essentially removing the requirement that the indexing category be a [[poset]] while preserving the directedness aspect in a [[categorification|categorified]] way. Another very important class of early limits and colimits involved situations that generalised [[intersections]] and [[unions]]. If one is looking at a [[family of subsets]] of some [[set]], then one can close it up under finite intersections and/or unions (if they are not already included) and use it to index diagrams. For instance, the family of [[continuous functions]] defined on [[open neighbourhoods]] of some point in a [[topological space]] will have this property. It was noticed that these limits and colimits behaved very nicely and a closer look showed that it was the \emph{(co)filtering} nature of the indexing category that was the key. This also leads us to filtered (co)limits. So, a \emph{filtered colimit} is a [[colimit]] over a [[diagram]] from a [[filtered category]], and a \emph{cofiltered limit} (sometimes called a filtered limit) is a [[limit]] over a [[diagram]] from a [[cofiltered category]]. Taken in a suitable category such as [[Set]], \textbf{a colimit being filtered is equivalent to its commuting with [[finite limits]]}. More generally, for $\kappa$ a [[regular cardinal]], a \emph{$\kappa$-filtered colimit} is one over a $\kappa$-filtered category (and dually), and when taken with values in [[Set]] these are precisely the colimits that commute with $\kappa$-[[small limit]]s. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} A \textbf{filtered colimit} or \textbf{finitely filtered colimit} is a [[colimit]] of a [[functor]] $F\colon D \to C$ where $D$ is a [[filtered category]]. For $\kappa$ a [[regular cardinal]] a \textbf{$\kappa$-filtered colimit} is one over a $\kappa$-filtered category. Similarly, a \textbf{cofiltered limit} is a [[limit]] of a functor $F\colon D \to C$ where $D$ is a [[cofiltered category]], or equivalently of a [[contravariant functor]] $F\colon D \to C$ (that is a functor $F\colon D^{op} \to C$) where $D$ is a filtered category. \end{defn} \begin{remark} \label{}\hypertarget{}{} A cofiltered limit may also be called a \textbf{filtered limit} (although this can be unclear); the respective terms \textbf{filtered [[direct limit]]} and \textbf{filtered [[inverse limit]]} are also popular. \end{remark} A [[functor]] that preserves all finitely filtered colimits is called a \emph{[[finitary functor]]} . \hypertarget{Properties}{}\subsection*{{Properties}}\label{Properties} \hypertarget{commutation_with_small_limits}{}\subsubsection*{{Commutation with $\kappa$-small limits}}\label{commutation_with_small_limits} The following is the crucial property of filtered colimits: that they commute with [[finite limits]]. \begin{remark} \label{}\hypertarget{}{} For $C$ and $D$ two [[diagram]] categories and \begin{displaymath} F : C \times D \to Set \end{displaymath} a diagram, there is a canonical morphism \begin{displaymath} \lambda : {\lim_\to}_C {\lim_\leftarrow}_D F \to {\lim_\leftarrow}_D {\lim_\to}_C F \end{displaymath} from the [[colimit]] over $C$ of the [[limit]] over $D$ to the limit over $D$ of the colimit over $C$ of $F$: $\lambda$ is given by a [[cone]], whose components \begin{displaymath} \lambda_d : {\lim_\to}_C {\lim_\leftarrow}_D F \to {\lim_\to}_C F(-,d) \end{displaymath} are in turn given by a [[cocone]] with components \begin{displaymath} (\lambda_d)_c : {\lim_\leftarrow}_D F(c,-) \to {\lim_\to}_C F(-,d) \,. \end{displaymath} This finally take to have as components \begin{displaymath} {\lim_\leftarrow}_D F(c,d) \to F(c,d) \to {\lim_\to}_C F(c,d) \,. \end{displaymath} One checks that this indeed implies that all the components are natural and gives the existence of the original morphism. Notice that in general $\lambda$ is \emph{not} an [[isomorphism]]. \end{remark} \begin{defn} \label{}\hypertarget{}{} We say the [[limit]] ${\lim_\leftarrow}_D F(-,-)$ \textbf{commutes} with the colimit ${\lim_\to}_C F(-,-)$ if the morphism $\lambda$ above is an [[isomorphism]] \begin{displaymath} {\lim_\to}_C {\lim_\leftarrow}_D F \stackrel{\simeq}{\to} {\lim_\leftarrow}_D {\lim_\to}_C F \,. \end{displaymath} \end{defn} \begin{prop} \label{FilteredColimitsCommuterWithFiniteLimits}\hypertarget{FilteredColimitsCommuterWithFiniteLimits}{} In [[Set]], filtered colimits commute with [[finite limits]]. In fact, [[filtered categories]] $C$ are precisely those shapes of [[diagram]] categories such that colimits over them commute with all finite limits in Sets. More generally, for $\kappa$ a [[regular cardinal]], then $\kappa$-filtered colimits commute with $\kappa$-small limits. \end{prop} A detailed components proof of the first part is in \hyperlink{Borceux}{Borceux, theorem I2.13.4} or (\hyperlink{BJTS14}{BJTS 14}). For more on this see also [[limits and colimits by example]]. \begin{warning} \label{}\hypertarget{}{} It is not true that filtered colimits and finite limits commute in \emph{any} category $C$ which has them. A simple example is where $C$ is the [[poset]] of [[closed subspaces]] of the [[one-point compactification]] $\mathbb{N} \cup \{\infty\}$ of the [[discrete space]] of [[natural numbers]]. If $A = \{\infty\}$ and $B_i$ ranges over finite subsets of $\mathbb{N}$, then $A \times colim_i B_i = \{\infty\} \cap (\mathbb{N} \cup \{\infty\}) = \{\infty\}$, but $colim_i A \times B_i = colim_i \{\infty\} \cap B_i = colim_i \emptyset = \emptyset$. \end{warning} According to 1.5 and 1.21 in [[LPAC]], a category has $\kappa$-[[directed colimits]] precisely if it has $\kappa$-filtered ones, and a functor preserves $\kappa$-directed colimits iff it preserves $\kappa$-filtered ones. A proof of this result, following Adamek \& Rosicky, may be found [[theorem:directed colimits imply filtered colimits|here]]. The fact that directed colimits suffice to obtain all filtered ones may be regarded as a convenience similar to the fact that all [[colimits]] can be constructed from [[coproducts]] and [[coequalizers]]. Of course, a [[duality|dual]] result holds for [[codirected limits]]. \hypertarget{flat_functors_and_points_of_presheaf_toposes}{}\subsubsection*{{Flat functors and points of presheaf toposes}}\label{flat_functors_and_points_of_presheaf_toposes} Let $C$ be a small category. A functor $F: C \to Set$ is \textbf{[[flat functor|flat]]} if it is a filtered colimit of [[representable functor]]s. Equivalently, a [[module]] $F: C \to Set$ is flat if and only if the [[tensor product of functors|tensor product]] \begin{displaymath} - \otimes_C F: Set^{C^{op}} \to Set \end{displaymath} is [[left exact functor|left exact]]. One may prove as a corollary that if $C$ is [[finitely complete category|finitely complete]], $F$ is flat if and only if it is [[left exact functor|left exact]] (preserves finite limits). Since this tensor product is automatically a left adjoint, we have the following basic result: \begin{prop} \label{}\hypertarget{}{} For $C$ a [[small category]], the category of [[point of a topos|topos points]] of the [[presheaf topos]] $Set^{C^{op}}$ (i.e., [[geometric morphism]]s $Set \to Set^{C^{op}}$ and natural transformations between them) is equivalent to the category of flat modules on $C$. \end{prop} \hypertarget{description_in_set_grp_top_and_alike}{}\subsubsection*{{Description in Set, Grp, Top and alike}}\label{description_in_set_grp_top_and_alike} Elements in filtered colimits in [[Set]] and [[Grp]] are given as classes of equivalences, so called [[germs]]. Filtered limits in [[Set]] and [[Top]] are given as families of compatible elements, so called [[threads]]. \hypertarget{more}{}\subsubsection*{{More}}\label{more} (More was/is to be written here, including an application to [[geometric realization]], relation to [[Diaconescu's theorem]], and perhaps more.) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[filtered category]], [[compact object]] \item [[sifted colimit]], [[sifted (∞,1)-colimit]] \item [[filtered (∞,1)-colimit]], [[filtered homotopy colimit]] \end{itemize} Filtered colimits are also important in the theory of [[locally presentable category|locally presentable]] and [[accessible category|accessible]] categories. See also [[pro-object]] and [[ind-object]]. \hypertarget{references}{}\subsection*{{References}}\label{references} Section 2.13 in part I of \begin{itemize}% \item [[Francis Borceux]], \emph{[[Handbook of Categorical Algebra]]} \end{itemize} Also \begin{itemize}% \item Marie Bjerrum, [[Peter Johnstone]], [[Tom Leinster]], William F. Sawin, \emph{Notes on commutation of limits and colimits} (\href{http://arxiv.org/abs/1409.7860}{arXiv:1409.7860}) \end{itemize} [[!redirects filtered limit]] [[!redirects filtered limits]] [[!redirects cofiltered limit]] [[!redirects cofiltered limits]] [[!redirects filtered colimit]] [[!redirects filtered colimits]] [[!redirects filtered inverse limit]] [[!redirects filtered inverse limits]] [[!redirects cofiltered inverse limit]] [[!redirects cofiltered inverse limits]] [[!redirects filtered direct limit]] [[!redirects filtered direct limits]] \end{document}