\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{final functor} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{limits_and_colimits}{}\paragraph*{{Limits and colimits}}\label{limits_and_colimits} [[!include infinity-limits - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{generalizations}{Generalizations}\dotfill \pageref*{generalizations} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A [[functor]] $F : C \to D$ is \textbf{final}, if we can restrict [[diagram]]s on $D$ to diagrams on $C$ along $F$ without changing their [[colimit]]. Dually, a functor is \textbf{initial} if pulling back diagrams along it does not change the [[limit]]s of these diagrams. Beware that this property is pretty much unrelated to that of a functor being an [[initial object]] or [[terminal object]] in the [[functor category]] $[C,D]$. The terminology comes instead from the fact that an object $d\in D$ is initial (resp. terminal) just when the corresponding functor $d:1\to D$ is initial (resp. final). \begin{description} \item[\textbf{Warning:} In older references (and also some others like [[Higher Topos Theory|HTT]]), final functors are sometimes called \emph{cofinal}, the terminology having been imported from order theory (e.g. [[cofinality]]). However, this is confusing in category theory because usually the prefix ``co-'' denotes dualization. In at least one place (\hyperlink{fb}{Borceux}) this non-dualization was treated as a dualization and the word ``final'' used for the \emph{dual} concept, but in general it seems that the consensus is to use ``final'' for what used to be called ``cofinal'', and ``initial'' for the dual concept (since ``co-final'' would be ambiguous). For example, Johnstone in [[Sketches of an Elephant]] before Proposition B2.5.12 says:] Traditionally, final functors were called `cofinal functors'; but this use of `co' is potentially misleading as it has nothing to do with dualization — it is derived from the Latin `cum' rather than `contra' — and so it is now generally omitted. \end{description} \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} A [[functor]] $F : C \to D$ is \textbf{final} if for every [[object]] $d \in D$ the [[comma category]] $(d/F)$ is non-empty and [[connected category|connected]]. A [[functor]] $F : C \to D$ is \textbf{initial} if the [[opposite category|opposite]] $F^{op} : C^{op} \to D^{op}$ is final, i.e. if for every [[object]] $d \in D$ the [[comma category]] $(F/d)$ is non-empty and [[connected category|connected]]. \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{prop} \label{}\hypertarget{}{} Let $F : C \to D$ be a [[functor]] The following conditions are equivalent. \begin{enumerate}% \item $F$ is final. \item For all functors $G : D \to Set$ the natural [[function]] between [[colimit]]s \begin{displaymath} \lim_\to G \circ F \to \lim_{\to} G \end{displaymath} is a [[bijection]]. \item For all categories $E$ and all functors $G : D \to E$ the natural [[morphism]] between [[colimit]]s \begin{displaymath} \lim_\to G \circ F \to \lim_{\to} G \end{displaymath} is a [[isomorphism]]. \item For all functors $G : D^{op} \to Set$ the natural [[function]] between [[limit]]s \begin{displaymath} \lim_\leftarrow G \to \lim_\leftarrow G \circ F^{op} \end{displaymath} is a [[bijection]]. \item For all categories $E$ and all functors $G : D^{op} \to E$ the natural [[morphism]] \begin{displaymath} \lim_\leftarrow G \to \lim_\leftarrow G \circ F^{op} \end{displaymath} is an [[isomorphism]]. \item For all $d \in D$ \begin{displaymath} {\lim_\to}_{c \in C} Hom_D(d,F(c)) \simeq * \,. \end{displaymath} \end{enumerate} \end{prop} \begin{prop} \label{}\hypertarget{}{} If $F : C \to D$ is final then $C$ is connected precisely if $D$ is. \end{prop} \begin{prop} \label{Stability}\hypertarget{Stability}{} If $F_1$ and $F_2$ are final, then so is their composite $F_1 \circ F_2$. If $F_2$ and the composite $F_1 \circ F_2$ are final, then so is $F_1$. If $F_1$ is a [[full and faithful functor]] and the composite is final, then both functors seperately are final. \end{prop} The first two statements of Proposition \ref{Stability} in fact follow from the stability properties of orthogonal factorization systems: \begin{prop} \label{}\hypertarget{}{} Final functors and \href{http://ncatlab.org/nlab/show/discrete+fibration}{discrete fibrations} form an \href{https://ncatlab.org/nlab/show/orthogonal+factorization+system}{orthogonal factorization system}. \end{prop} \hypertarget{generalizations}{}\subsection*{{Generalizations}}\label{generalizations} The generalization of the notion of final functor from [[category theory]] to [[(∞,1)-category|(∞,1)]]-[[higher category theory]] is described at \begin{itemize}% \item [[final (∞,1)-functor]]. \end{itemize} The characterization of final functors is also a special case of the characterization of [[exact squares]]. \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} \begin{example} \label{}\hypertarget{}{} If $D$ has a [[terminal object]] then the functor $F : {*} \to D$ that picks that terminal object is final: for every $d \in D$ the [[comma category]] $d/F$ is equivalent to $*$. The converse is also true: if a functor $*\to D$ is final, then its image is a terminal object. In this case the statement about preservation of colimits states that the colimit over a category with a terminal object is the value of the diagram at that object. Which is also readily checked directly. \end{example} \begin{example} \label{}\hypertarget{}{} Every [[right adjoint|right]] [[adjoint functor]] is final. \end{example} \begin{proof} Let $(L \dashv R) : C \to D$ be a pair of [[adjoint functors]].To see that $R$ is final, we may for instance check that for all $d \in D$ the comma category $d / R$ is non-empty and connected: It is non-empty because it contains the [[unit of an adjunction|adjunction unit]] $(L(d), d \to R L (d))$. Similarly, for \begin{displaymath} \itexarray{ && d \\ & {}^{\mathllap{f}}\swarrow && \searrow^{\mathrlap{g}} \\ R(a) &&&& R(b) } \end{displaymath} two objects, they are connected by a zig-zag going through the unit, by the \hyperlink{http://ncatlab.org/nlab/show/adjoint%20functor#UniversalArrows}{universal factorization property} of adjunctions \begin{displaymath} \itexarray{ && d \\ & \swarrow &\downarrow& \searrow \\ R(a) &\stackrel{R \bar f}{\leftarrow}& R L (d)& \stackrel{R(\bar g)}{\to} & R(b) } \,. \end{displaymath} \end{proof} \begin{example} \label{}\hypertarget{}{} The inclusion $\mathcal{C} \to \tilde \mathcal{C}$ of any category into its [[idempotent completion]] is final. \end{example} See at \emph{[[idempotent completion]]} in the section on \emph{\href{Karoubi+envelope#Finality}{Finality}}. \begin{example} \label{CoconeUnderCospan}\hypertarget{CoconeUnderCospan}{} The inclusion of the [[cospan]] [[diagram]] into its [[cocone]] \begin{displaymath} \left( \itexarray{ a \\ \downarrow \\ c \\ \uparrow \\ b } \right) \hookrightarrow \left( \itexarray{ a \\ \downarrow & \searrow \\ c &\longrightarrow & p \\ \uparrow & \nearrow \\ b } \right) \end{displaymath} is initial. \end{example} \begin{remark} \label{}\hypertarget{}{} By the characterization (\href{overcategory#LimitsInSliceViaLimitsOfCoconedDiagram}{here}) of limits in a [[slice category]], this implies that [[fiber products]] in a [[slice category]] are computed as fiber products in the underlying category, or in other words that [[dependent sum]] to the point preserves fiber products. \end{remark} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item \textbf{final functor}, [[cofinal diagram]] \item [[homotopy final functor]] \item [[final (∞,1)-functor]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Section 2.5 of \begin{itemize}% \item Kashiwara, Shapira, \emph{[[Categories and Sheaves]]} \end{itemize} Section 2.11 of \begin{itemize}% \item [[Francis Borceux]], \emph{Handbook of categorical algebra 1, Basic category theory} \end{itemize} Notice that this says ``final functor'' for the version under which limits are invariant. Section IX.3 of \begin{itemize}% \item [[Saunders Mac Lane]], \emph{[[Categories for the Working Mathematician]]} \end{itemize} [[!redirects cofinal functor]] [[!redirects cofinal functors]] [[!redirects final functor]] [[!redirects final functors]] [[!redirects initial functor]] [[!redirects initial functors]] \end{document}