\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{finite group} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{group_theory}{}\paragraph*{{Group Theory}}\label{group_theory} [[!include group theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{cauchys_theorem}{Cauchy's theorem}\dotfill \pageref*{cauchys_theorem} \linebreak \noindent\hyperlink{feitthompson_theorem}{Feit-Thompson theorem}\dotfill \pageref*{feitthompson_theorem} \linebreak \noindent\hyperlink{classification}{Classification}\dotfill \pageref*{classification} \linebreak \noindent\hyperlink{most_finite_groups_are_nilpotent}{``Most finite groups are nilpotent''}\dotfill \pageref*{most_finite_groups_are_nilpotent} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{finite group} is a [[group]] whose underlying [[set]] is [[finite set|finite]]. This is equivalently a [[group object]] in [[FinSet]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{cauchys_theorem}{}\subsubsection*{{Cauchy's theorem}}\label{cauchys_theorem} Let $G$ be a finite group with [[order of a group|order]] ${\vert G\vert} \in \mathbb{N}$. \begin{theorem} \label{}\hypertarget{}{} \textbf{(Cauchy)} If a [[prime number]] $p$ divides ${\vert G\vert}$, then equivalently \begin{itemize}% \item $G$ has an element of [[order of an element|order]] $p$; \item $G$ has a [[subgroup]] of [[order of a group]] $p$. \end{itemize} \end{theorem} See at \emph{[[Cauchy's theorem]]} for more. \hypertarget{feitthompson_theorem}{}\subsubsection*{{Feit-Thompson theorem}}\label{feitthompson_theorem} \begin{theorem} \label{}\hypertarget{}{} Every finite group of odd [[order]] is a [[solvable group]]. \end{theorem} See at \emph{[[Feit-Thompson theorem]]}. \hypertarget{classification}{}\subsubsection*{{Classification}}\label{classification} The structure of finite groups is a very hard problem; the classification of finite [[simple group]]s alone is one of the largest theorems ever proved (certainly if measured by number of journal pages needed for a complete proof). All finite groups are built out of [[simple group]]s, but the ways to do this have not (yet?) been fully classified. A point of view that can be useful in particular cases -- more useful than the [[Jordan-Hölder theorem]] -- is provided by the [[F\emph{-theorem]], due to [[Hans Fitting]] in the [[solvable group|solvable]] case and [[Helmut Bender]] in the general case. It states that $C_G(F^*(G))=Z(F^*(G))$, where $F^*(G)$ is the [[generalized Fitting subgroup]] of $G$, defined below, $C_G(F^*(G))$ is the [[subgroup]] of $G$ consisting of all elements commuting with every element of $F^*(G)$, and $Z(H)$ for any group $H$ is the [[center]] of $H$, the subgroup of $H$ consisting of all elements commuting with every element of $H$. Thus $G$ is somehow assembled from $F^*(G)$, whose structure has some easy features, and $G/C_G(F^*(G))$, which is isomorphic to a subgroup of the [[automorphism group]] of $F^*(G)$ and which has a [[quotient]] group [[isomorphic]] to $G/F^*(G)$.} One definition of $F^*(G)$ is that it is the subgroup generated by all [[normal subgroup]]s $N$ of $G$ possessing subgroups $N_1,N_2,\dots, N_r$ for some integer $r$ such that $N=N_1N_2\cdots N_r$; $x_i x_j=x_j x_i$ for all $x_i\in N_i$, $x_j\in N_j$, and distinct subscripts $i$ and $j$; and each $N_i$ either has prime power order or is a [[quasisimple group]]. Bender proved that $F^*(G)$ itself enjoys these properties. Finally a group $H$ is called quasisimple if and only if $H=[H,H]$ and $H/Z(H)$ is simple. The finite quasisimple groups have been classified, as a consequence of the classification of finite simple groups and the calculation of the [[Schur multiplier]] of each finite simple group. For more on this see \begin{itemize}% \item [[classification of finite simple groups]]. \end{itemize} \hypertarget{most_finite_groups_are_nilpotent}{}\paragraph*{{``Most finite groups are nilpotent''}}\label{most_finite_groups_are_nilpotent} The meaning of the title is this curious fact (based on empirical evidence, anyway): if we are counting isomorphism classes of groups up to a given order, then most of them are $2$-[[p-primary group|primary]] groups (and therefore [[nilpotent group|nilpotent]]; see [[class equation]]). For example, it is reported that ``out of the 49,910,529,484 groups of order at most 2000, a staggering 49,487,365,422 of them have order 1024''. (It has also been suggested that a more meaningful weighting would divide each isomorphism class representative by the order of its [[automorphism group]]; as of this writing the nLab authors don't know how much this would affect the strength of the assertion ``most finite groups are nilpotent''.) Discussion can be found \href{http://mathoverflow.net/a/114666/2926}{here} and \href{https://golem.ph.utexas.edu/category/2012/11/almost_all_of_the_first_50_bil.html}{here}. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item For every [[natural number]] $n \in \mathbb{N}$, the [[cyclic group]] \begin{displaymath} \mathbb{Z}_n := \mathbb{Z}/n \mathbb{Z} \end{displaymath} is finite. \item The largest finite group that is also a [[sporadic simple group]], i.e., does not belong(up to isomorphism) to the infinite family of the alternating groups or to the infinite family of finite groups of Lie type, is the [[Monster group]]. \item [[finite subgroups of SO(3)]] and [[finite subgroups of SU(2)]] have an [[ADE classification]] \item the [[general linear group]] over [[prime fields]] are finit, such as [[GL(2,3)]] \item [[wallpaper group]] \item see also at \emph{[[finite abelian group]]}. \end{itemize} [[!include ADE -- table]] \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[finite abelian group]] \item [[finite group scheme]] \item [[Burnside ring]], [[Segal conjecture]] \end{itemize} \hypertarget{References}{}\subsection*{{References}}\label{References} \begin{itemize}% \item \emph{\href{http://brauer.maths.qmul.ac.uk/Atlas/v3/}{Atlas of finite group representations}} \end{itemize} Discussion of [[group characters]] and [[group cohomology]] of finite groups includes \begin{itemize}% \item [[Michael Atiyah]], \emph{Characters and cohomology of finite groups}, Publications Math\'e{}matiques de l'IH\'E{}S, 9 (1961), p. 23-64 (\href{http://www.numdam.org/item?id=PMIHES_1961__9__23_0}{Numdam}) \item [[Alejandro Adem]], R.James Milgram, \emph{Cohomology of Finite Groups}, Springer 2004 \item [[Narthana Epa]], \emph{Platonic 2-groups}, 2010 (\href{http://www.ms.unimelb.edu.au/documents/thesis/Epa-Platonic2-Groups.pdf}{pdf}) \end{itemize} Discussion of [[free actions]] of finite groups on [[n-spheres]] (see also at \emph{[[ADE classification]]}) includes \begin{itemize}% \item [[John Milnor]], \emph{Groups which act on $S^n$ without fixed points}, American Journal of Mathematics Vol. 79, No. 3 (Jul., 1957), pp. 623-630 (\href{http://www.jstor.org/stable/2372566}{JSTOR}) \item Adam Keenan, \emph{Which finite groups act freely on spheres?}, 2003 (\href{http://www.math.utah.edu/~keenan/actions.pdf}{pdf}) \end{itemize} [[!redirects finite groups]] \end{document}