\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{finite object} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{compact_objects}{}\paragraph*{{Compact objects}}\label{compact_objects} [[!include compact object - contents]] \hypertarget{finite_objects}{}\section*{{Finite objects}}\label{finite_objects} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definitions}{Definitions}\dotfill \pageref*{Definitions} \linebreak \noindent\hyperlink{ExternalDefinition}{External version}\dotfill \pageref*{ExternalDefinition} \linebreak \noindent\hyperlink{InternalDefinition}{Internal version}\dotfill \pageref*{InternalDefinition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{closure_of_finite_objects}{Closure of finite objects}\dotfill \pageref*{closure_of_finite_objects} \linebreak \noindent\hyperlink{subcategories_of_finite_objects}{Subcategories of finite objects}\dotfill \pageref*{subcategories_of_finite_objects} \linebreak \noindent\hyperlink{relation_to_slice_toposes}{Relation to slice toposes}\dotfill \pageref*{relation_to_slice_toposes} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of \emph{[[finite object]]} in a [[category]] -- notably in a [[topos]] -- is a generalisation of the notion of [[finite set]] in [[Set|the category of sets]]. As there are already at least five distinct notions of [[finite set]] in [[constructive mathematics]], so there must be at least five distinct notions of finite object internal to a [[topos]]. Additionally, the definitions may also be interpreted in an `external' sense, giving even further notions. Only some are mentioned below. Also beware that in [[category theory]] the term `finite object' is also used in a much more general sense to mean a \emph{[[compact object]]}. Similar finiteness meaning may also be attributed to [[dualizable objects]] in [[monoidal categories]] and to [[perfect complexes]] (of [[abelian sheaves]]) in [[geometry]]. \hypertarget{Definitions}{}\subsection*{{Definitions}}\label{Definitions} Consider an ambient [[topos]] $\mathcal{T}$. Assume that $\mathcal{T}$ is equipped with a [[natural numbers object]] $N$. Write $N_{\lt} \hookrightarrow N\times N$ is its strict order relation. \hypertarget{ExternalDefinition}{}\subsubsection*{{External version}}\label{ExternalDefinition} A ``finite set'' in $\mathcal{T}$ in the strictest sense is usually called a \textbf{finite cardinal}. This is an [[object]] $[n] \in \mathcal{C}$ which is the [[pullback]] of $N_{\lt}\to N$ along some [[global element]] $n:1\to N$. We can then consider [[subobjects]], [[quotient objects]], and [[subquotient objects]] of finite cardinals to obtain external versions of subfinite, finitely indexed, and subfinitely indexed sets. \hypertarget{InternalDefinition}{}\subsubsection*{{Internal version}}\label{InternalDefinition} The \emph{internal} version of a ``finite set'' is an object $X$ such that ``$X$ is a finite cardinal'' is true in the [[internal logic]]. This is equivalent to the following \begin{defn} \label{KFinite}\hypertarget{KFinite}{} An object $X \in \mathcal{T}$ is \emph{locally} isomorphic to a finite cardinal, if there is an [[epimorphism]] $U\to 1$ and a [[generalized element]] $n:U\to N$ such that $U\times X \cong n^*(N_\lt)$ over $U$. Equivalently, there is a $U\to 1$ such that $U\times X$ is a finite cardinal in the [[slice topos]] $S/U$. An \textbf{internally finitely indexed object} is an object $X$ is which is locally a [[quotient]] of a finite cardinal, hence such that there is an [[epimorphism]] $U \to *$, a finite cardinal in the slice topos $n \in \mathcal{T}_{/U}$ and an epimorphism $n \to U \times X$. \end{defn} An ``internally finitely indexed'' object is generally called a \textbf{Kuratowski-finite object} or \textbf{$K$-finite object} for short, and an ``internally subfinitely indexed'' one is called a \textbf{$\tilde{K}$-finite object}. There is a more general definition of K-finite objects that does not need to assume the presence of a [[natural number object]]. See (\hyperlink{Johnstone}{Johnstone, theorem D5.4.13}). Since it is still provable in the [[internal logic]] that any decidable finitely indexed set is finite, the ``internally finite'' objects (those that are locally isomorphic to a finite cardinal, as above) can be characterized as the \textbf{decidable $K$-finite objects}. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{closure_of_finite_objects}{}\subsubsection*{{Closure of finite objects}}\label{closure_of_finite_objects} The following lists closure properties of K-finite objects, def. \ref{KFinite}. \begin{prop} \label{}\hypertarget{}{} \begin{enumerate}% \item The [[initial object]] and the [[terminal object]] are K-finite. \item The [[image]] of a K-finite object under an [[epimorphism]] is K-finite. \item The [[union]] of two K-finite [[subobjects]] is K-finite. \item A [[coproduct]] is K-finite precisely if both summands are. \item A [[subterminal object]] is K-finite precisely if it is a [[complemented subobject]]. \item A [[product]] of two K-finite objects is K-finite. \end{enumerate} \end{prop} This appears in (\hyperlink{Johnstone}{Johnstone}) as lemma D5.4.4, corollary D5.4.5, pro. 5.4.8. \hypertarget{subcategories_of_finite_objects}{}\subsubsection*{{Subcategories of finite objects}}\label{subcategories_of_finite_objects} The [[full subcategory]] of finite cardinals in any [[topos]] is again a topos, and it is [[Boolean topos|Boolean]]. Its [[subobject classifier]] is $2=1\sqcup 1$, which in the ambient topos is the classifier only of [[decidable object|decidable]] subobjects. This means that [[classical logic|classically]] valid arguments, including all of finitary combinatorics, can generally be applied easily to finite cardinals, as long as we always interpret ``subset'' to mean ``decidable subset.'' \begin{theorem} \label{}\hypertarget{}{} The [[full subcategory]] $\mathcal{T}_{dKf} \hookrightarrow \mathcal{T}$ of decidable $K$-finite objects in a topos $\mathcal{T}$ is a [[Boolean topos]] whose subobject classifier is $2$. The category of $K$-finite objects is a topos if and only if every $K$-finite object is decidable, and the category of $\tilde{K}$-finite objects is a topos if (but not only if) the subobject classifier is $K$-finite. \end{theorem} The first statement appears as (\hyperlink{Johnstone}{Johnstone, theorem 5.4.18}). \begin{remark} \label{}\hypertarget{}{} The full subcategory $\mathcal{T}_{dKf} \hookrightarrow \mathcal{T}$ can be regarded as the ``[[stack]] completion'' of the topos of finite cardinals. \end{remark} \hypertarget{relation_to_slice_toposes}{}\subsubsection*{{Relation to slice toposes}}\label{relation_to_slice_toposes} \begin{prop} \label{}\hypertarget{}{} An object $X \in \mathcal{T}$ is K-finite precisely if the [[étale geometric morphism]] \begin{displaymath} \mathcal{T}_{/X} \to \mathcal{T} \end{displaymath} out of the [[slice topos]] is a [[proper geometric morphism]]. \end{prop} (\hyperlink{MoerdijkVermeulen}{Moerdijk-Vermeulen, examples III 1.4}) \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item In any [[Boolean topos]], all four internal notions coincide. In a [[well-pointed topos]], each internal notion coincides with its external notion. Therefore, in a well-pointed Boolean topos, including the topos [[Set]] as usually conceived, all notions of finiteness coincide. \item In a [[presheaf]] topos $[C^{op},Set]$, the finite cardinals are the finite-set-valued functors which are constant on each connected component. In particular, if $C$ is a [[group]], then the topos of finite cardinals is equivalent to [[FinSet]]. \item Likewise, in the [[Grothendieck topos]] $Sh(X)$ of [[sheaf|sheaves]] on a space $X$, the finite cardinals are the locally constant functions $X\to N$. So if $X$ is connected, the topos of finite cardinals in $Sh(X)$ is also equivalent to $FinSet$. \item Examples of such are [[tiny object]]s and [[infinitesimal object]]s in sheaf toposes. \item By contrast, the $K$-finite objects in $[C^{op},Set]$ are the finite-set-valued functors each of whose transition functions is surjective, and the \emph{decidable} K-finite objects are the finite-set-valued functors each of whose transition functions is bijective. \item In particular, if $C$ is a groupoid, the topos of decidable $K$-finite objects is equivalent to $[C^{op},FinSet]$. Since the topos of presheaves on a groupoid is Boolean, this gives an example of a Boolean topos in which the finite cardinals (``externally finite objects'') and the (decidable) $K$-finite objects (``internally finite objects'') fail to coincide. \item In the [[category of sheaves]] $Sh(X)$ over a [[topological space]], the decidable K-finite objects are those that are ``locally finite;'' i.e. there is an [[open cover]] of $X$ such that over each open in the cover, the sheaf is a [[locally constant function]] to $N$. These are essentially the same as [[covering space|covering spaces]] of $X$ with finite fibres. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[finite set]], [[hereditarily finite set]] \item [[finite category]], [[finite limit]] \item [[decidable object]], [[theory of objects]] \item [[finite homotopy type]], [[finite spectrum]] \item [[finite (infinity,1)-category]], [[finite (infinity,1)-limit]] \end{itemize} [[!include finite objects -- table]] \hypertarget{references}{}\subsection*{{References}}\label{references} In \begin{itemize}% \item [[Peter Johnstone]], \emph{[[Sketches of an elephant]]} \end{itemize} finite cardinal objects are discussed in section D5.2, Kuratowski finite objects in section D5.4 See also \begin{itemize}% \item O. Acu\~n{}a-Ortega, [[Fred Linton]], \emph{Finiteness and decidability: I} , Springer Lecture Notes in Mathematics, (1979), Volume \textbf{753}, pp.80-100, (DOI: 10.1007/BFb0061813) \item [[Peter Johnstone]], [[Fred Linton]], \emph{Finiteness and decidability: II} , Cambridge Philosophical Society Mathematical Proceedings of the Cambridge Philosophical Society (1978). \item B. P. Chisala, M.-M. Mawanda, \emph{Counting Measure for Kuratowski Finite Parts and Decidability} , Cah.Top.G\'e{}om.Diff.Cat. \textbf{XXXII} 4 (1991) pp.345-353. (\href{archive.numdam.org/article/CTGDC_1991__32_4_345_0.pdf}{pdf}) \item S. J. Henry, \emph{Classifying Topoi and Preservation of Higher Order Logic by Geometric Morphisms} , PhD University of Michigan (2013). (\href{http://arxiv.org/abs/1305.3254}{arxiv}) \item C. Kuratowski, \emph{Sur la notion d'ensemble fini} , Fund. Math. \textbf{1} (1920) pp.129-131. (\href{http://matwbn.icm.edu.pl/ksiazki/fm/fm1/fm1117.pdf}{pdf}) \item [[Ieke Moerdijk]], J. Vermeulen, \emph{Relative compactness conditions for toposes} (\href{http://igitur-archive.library.uu.nl/math/2001-0702-142944/1039.pdf}{pdf}) and \emph{Proper maps of toposes} , American Mathematical Society (2000) \item L. N. Stout, \emph{Dedekind finiteness in topoi} , JPAA \textbf{49} (1987) pp.219-225. \item T. Streicher, P. Freyd, F. Linton, P.Johnstone, W. Lawvere, \emph{catlist discussion `finiteness in toposes'}, January 1997. (\href{http://www.mta.ca/~cat-dist/catlist/1999/finite-topos}{link}) \item [[Alfred Tarski|A. Tarski]], \emph{Sur les ensembles finis} , Fund. Math. \textbf{3} (1924) pp.45-95. (\href{http://matwbn.icm.edu.pl/ksiazki/fm/fm6/fm619.pdf}{pdf}) \item H. Volger, \emph{Ultrafilters, ultrapowers and finiteness in a topos} , JPAA \textbf{6} (1975) pp.345-356. \end{itemize} [[!redirects finite object]] [[!redirects finite objects]] [[!redirects finite]] [[!redirects finiteness]] [[!redirects B-finite object]] [[!redirects B-finite objects]] [[!redirects B-finite]] [[!redirects B-finiteness]] [[!redirects F-finite object]] [[!redirects F-finite objects]] [[!redirects F-finite]] [[!redirects F-finiteness]] [[!redirects subfinite object]] [[!redirects subfinite objects]] [[!redirects subfinite]] [[!redirects subfiniteness]] [[!redirects B-tilde-finite object]] [[!redirects B-tilde-finite objects]] [[!redirects B-tilde-finite]] [[!redirects B-tilde-finiteness]] [[!redirects F-tilde-finite object]] [[!redirects F-tilde-finite objects]] [[!redirects F-tilde-finite]] [[!redirects F-tilde-finiteness]] [[!redirects finitely indexed object]] [[!redirects finitely-indexed object]] [[!redirects finitely indexed objects]] [[!redirects finitely-indexed objects]] [[!redirects finitely indexed]] [[!redirects finitely-indexed]] [[!redirects Kuratowski-finite object]] [[!redirects Kuratowski finite object]] [[!redirects Kuratowski-finite objects]] [[!redirects Kuratowski finite objects]] [[!redirects Kuratowski-finite]] [[!redirects Kuratowski finite]] [[!redirects Kuratowski finiteness]] [[!redirects Kuratowski-finiteness]] [[!redirects K-finite object]] [[!redirects K-finite objects]] [[!redirects K-finite]] [[!redirects K-finiteness]] [[!redirects subfinitely indexed object]] [[!redirects subfinitely-indexed object]] [[!redirects subfinitely indexed objects]] [[!redirects subfinitely-indexed objects]] [[!redirects subfinitely indexed]] [[!redirects subfinitely-indexed]] [[!redirects Kuratowski-subfinite object]] [[!redirects Kuratowski subfinite object]] [[!redirects Kuratowski-subfinite objects]] [[!redirects Kuratowski subfinite objects]] [[!redirects Kuratowski-subfinite]] [[!redirects Kuratowski subfinite]] [[!redirects Kuratowski subfiniteness]] [[!redirects Kuratowski-subfiniteness]] [[!redirects K-tilde-finite object]] [[!redirects K-tilde-finite objects]] [[!redirects K-tilde-finite]] [[!redirects K-tilde-finiteness]] [[!redirects Dedekind-finite object]] [[!redirects Dedekind finite object]] [[!redirects Dedekind-finite objects]] [[!redirects Dedekind finite objects]] [[!redirects Dedekind-finite]] [[!redirects Dedekind finite]] [[!redirects Dedekind finiteness]] [[!redirects Dedekind-finiteness]] [[!redirects D-finite object]] [[!redirects D-finite objects]] [[!redirects D-finite]] [[!redirects D-finiteness]] \end{document}