\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{finite rotation group} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{group_theory}{}\paragraph*{{Group Theory}}\label{group_theory} [[!include group theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{classifcations}{Classifcations}\dotfill \pageref*{classifcations} \linebreak \noindent\hyperlink{finite_subgroups_of___and_}{Finite subgroups of $O(3)$, $SO(3)$ and $Spin(3)$}\dotfill \pageref*{finite_subgroups_of___and_} \linebreak \noindent\hyperlink{FiniteSubgroupsOfO4}{Finite subgroups of $O(4)$, [[SO(4)]] and [[Spin(4)]]}\dotfill \pageref*{FiniteSubgroupsOfO4} \linebreak \noindent\hyperlink{finite_subgroups_of_}{Finite subgroups of $O(5)$}\dotfill \pageref*{finite_subgroups_of_} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{SubgroupLattice}{Subgroup lattice}\dotfill \pageref*{SubgroupLattice} \linebreak \noindent\hyperlink{GroupCohomology}{Group cohomology}\dotfill \pageref*{GroupCohomology} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \noindent\hyperlink{finite_subgroups_of__and_}{Finite subgroups of $SO(3)$ and $Spin(3)$}\dotfill \pageref*{finite_subgroups_of__and_} \linebreak \noindent\hyperlink{finite_subgroups_of__2}{Finite subgroups of $O(4)$}\dotfill \pageref*{finite_subgroups_of__2} \linebreak \noindent\hyperlink{finite_subgroups_of__3}{Finite subgroups of $O(5)$}\dotfill \pageref*{finite_subgroups_of__3} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} By a \emph{finite rotation group} one means a [[finite]] [[subgroup]] of a rotation group, hence of a [[special orthogonal group]] $SO(n)$ or [[spin group]] $Spin(n)$ or similar. The finite subgroups of [[SO(3)]] and [[SU(2)]] follow an [[ADE classification]] (theorem \ref{ClassificationOfFiniteSubgroupsOfSO3} below). \hypertarget{classifcations}{}\subsection*{{Classifcations}}\label{classifcations} \hypertarget{finite_subgroups_of___and_}{}\subsubsection*{{Finite subgroups of $O(3)$, $SO(3)$ and $Spin(3)$}}\label{finite_subgroups_of___and_} \begin{theorem} \label{ClassificationOfFiniteSubgroupsOfSO3}\hypertarget{ClassificationOfFiniteSubgroupsOfSO3}{} \textbf{([[ADE classification]] of [[finite group|finite]] [[subgroups]] of [[SO(3)]] and [[spin group|Spin(3)]]$\simeq$ [[SU(2)]])} The [[finite group|finite]] [[subgroups]] of the [[special orthogonal group]] $SO(3)$ as well as the [[finite group|finite]] [[subgroups]] of the [[special unitary group]] [[SU(2)]] are, up to [[conjugation]], given by the following classification: [[!include ADE -- table]] Here under the [[double cover]] projection (using the \href{spin+group#ExceptionalIsomorphisms}{exceptional isomorphism} $SU(2) \simeq Spin(3)$) \begin{displaymath} SU(2) \simeq Spin(3) \overset{\pi}{\longrightarrow} SO(3) \end{displaymath} all the finite subgroups of $SU(2)$ except the [[odd number|odd]]-[[order of a group|order]] [[cyclic groups]] are the [[preimages]] of the corresponding finite subgroups of $SO(3)$, in that we have [[pullback]] [[diagrams]] \begin{displaymath} \itexarray{ \left\langle \exp \left( \pi \mathrm{i} \tfrac{1}{n} \right) \right\rangle & = & \mathbb{Z}/(2n) &\overset{\phantom{AA}}{\hookrightarrow}& Spin(2) &\overset{\phantom{AA}}{\hookrightarrow}& Spin(3) \\ && \big\downarrow &{}^{(pb)}& \big\downarrow &{}^{(pb)}& \big\downarrow^{ \mathrlap{\pi} } \\ \left\langle Ad_{ \exp \left( \pi \mathrm{i} \tfrac{1}{n} \right) } \right\rangle & = & \mathbb{Z}/n &\overset{\phantom{AA}}{\hookrightarrow}& SO(2) &\overset{\phantom{AA}}{\hookrightarrow}& SO(3) } \end{displaymath} exhibiting the [[even number|even]] [[order of a group|order]] [[cyclic groups]] as subgroups of [[Spin(2)]], including the the minimal case of the [[group of order 2]] \begin{displaymath} \itexarray{ \left\langle \exp \left( \pi \mathrm{i} \right) = -1 \right\rangle & = & \mathbb{Z}/2 &\overset{\phantom{AA}}{\hookrightarrow}& Spin(2) &\overset{\phantom{AA}}{\hookrightarrow}& Spin(3) \\ && \big\downarrow &{}^{(pb)}& \big\downarrow &{}^{(pb)}& \big\downarrow^{ \mathrlap{\pi} } \\ \left\langle Ad_{ \exp \left( \pi \mathrm{i} \right) } = e \right\rangle & = & 1 &\overset{\phantom{AA}}{\hookrightarrow}& SO(2) &\overset{\phantom{AA}}{\hookrightarrow}& SO(3) } \end{displaymath} as well as \begin{displaymath} \itexarray{ \left\langle \exp\left( \pi \mathrm{i} \tfrac{1}{n} \right), \, \mathrm{j} \right\rangle &=& 2 D_{2n} &\overset{\phantom{AA}}{\hookrightarrow}& Pin_-(2) &\overset{\phantom{AA}}{\hookrightarrow}& Spin(3) \\ && \big\downarrow &{}^{(pb)}& \big\downarrow &{}^{(pb)}& \big\downarrow^{ \mathrlap{\pi} } \\ \left\langle Ad_{\exp\left( \pi \mathrm{i} \tfrac{1}{n} \right) }, \, Ad_{\mathrm{j}} \right\rangle && D_{2n} &\overset{\phantom{AA}}{\hookrightarrow}& O(2) &\overset{\phantom{AA}}{\hookrightarrow}& SO(3) } \end{displaymath} exhibiting the [[binary dihedral groups]] as sitting inside the [[Pin(2)]]-[[subgroup]] of [[Spin(3)]], but only [[commuting diagrams]] \begin{displaymath} \itexarray{ \left\langle \exp \left( 2 \pi \mathrm{i} \tfrac{1}{{2n+1}} \right) \right\rangle & = & \mathbb{Z}/(2n+1) &&\overset{\phantom{AA}}{\hookrightarrow}&& Spin(3) \\ && \big\downarrow && && \big\downarrow^{ \mathrlap{\pi} } \\ \left\langle Ad_{ \exp \left( 2 \pi \mathrm{i} \tfrac{1}{2n+1} \right) } \right\rangle & = & \mathbb{Z}/(2n+1) &\overset{\phantom{AA}}{\hookrightarrow}& SO(2) &\overset{\phantom{AA}}{\hookrightarrow}& SO(3) } \end{displaymath} for the [[odd number|odd]] [[order of a group|order]] [[cyclic group|cyclic]] [[subgroups]]. \end{theorem} This goes back to (\hyperlink{Klein1884}{Klein 1884, chapter I}). Full proof for $SO(3)$ is spelled out for instance in (\hyperlink{Rees05}{Rees 05, theorem 11}, \hyperlink{DeVisscher11}{De Visscher 11}). The proof for the case of $SL(2,\mathbb{C})$ is spelled out in (\hyperlink{MillerBlichfeldtDickson16}{Miller-Blichfeldt-Dickson 16}) reviewed in (\hyperlink{Serrano14}{Serrano 14, section 2}). The proof of the case for $SU(2)$ given the result for $SO(3)$ is spelled out in \hyperlink{Keenan03}{Keenan 03, theorem 4}. \hypertarget{FiniteSubgroupsOfO4}{}\subsubsection*{{Finite subgroups of $O(4)$, [[SO(4)]] and [[Spin(4)]]}}\label{FiniteSubgroupsOfO4} For classification of the finite subgroups of $O(4)$ see (\hyperlink{DuVal65}{duVal 65}, \hyperlink{ConwaySmith03}{Conway-Smith 03}) For finite subgroups of [[Spin(4)]]: \hyperlink{MFF12}{MFF 12, appendix B}. In this classification, the [[symmetry group]] of the [[120-cell]] and hence that of the [[600-cell]] is the [[quotient group]] $(2 I \times 2 I)/\mathbb{Z}_2$ by the [[cyclic group of order 2]] of the [[direct product group]] of two copies of the [[binary icosahedral group]] (\hyperlink{SadocMosseri89}{SadocMosseri 89, p. 172}, see \hyperlink{MFF12}{MFF 12, table 16}). \hypertarget{finite_subgroups_of_}{}\subsubsection*{{Finite subgroups of $O(5)$}}\label{finite_subgroups_of_} For classification of the finite subgroups of $O(5)$ see \hyperlink{MecchiaZimmermann10}{Mecchia-Zimmermann 10} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{SubgroupLattice}{}\subsubsection*{{Subgroup lattice}}\label{SubgroupLattice} The [[subgroup]] [[lattice]] of [[SU(2)]] under the three exceptional [[finite group|finite]] subgroups [[2T]], [[2O]], [[2I]] (from Theorem \ref{ClassificationOfFiniteSubgroupsOfSO3}) looks as follows: This is obtained from the subgroup lattice as shown on \href{https://people.maths.bris.ac.uk/~matyd/GroupNames/}{GroupNames} for $2I \simeq$ and $2O \simeq$ See also \hyperlink{GoncalvesGuaschi11}{Goncalves-Guaschi 11, appendix}. \hypertarget{GroupCohomology}{}\subsubsection*{{Group cohomology}}\label{GroupCohomology} \begin{prop} \label{GroupCohomologyOfFiniteSubgroupsOfSU2}\hypertarget{GroupCohomologyOfFiniteSubgroupsOfSU2}{} \textbf{([[group cohomology]] of [[finite subgroups of SU(2)]])} Let $G_{ADE}$ be a [[finite subgroup of SU(2)]]. Then its [[group cohomology]] with [[integer]] [[coefficients]] is as follows: \begin{displaymath} H^n_{grp}(G_{ADE}, \mathbb{Z}) \;\simeq\; \left\{ \itexarray{ \mathbb{Z} &\vert& n = 0 \\ G_{ADE}^{ab} &\vert& n = 2 \, mod \, 4 \\ \mathbb{Z}/{\vert G_{ADE}\vert} &\vert& n \, \text{positive multiple of} \, 4 \\ 0 &\vert& \text{otherwise} } \right. \end{displaymath} Here $G_{ADE}^{ab}$ denotes the [[abelianization]] of $G_{ADE}$ and $\vert G_{ADE}\vert$ its [[cardinality]], hence $\mathbb{Z}/{\vert G_{ADE}\vert}$ the [[cyclic group]] whose [[order of a group|order]] is the cardinality of $G_{ADE}$. The [[group homology]] with [[integer]] [[coefficients]] is \begin{displaymath} H_n^{grp}(G_{ADE}, \mathbb{Z}) \;\simeq\; \left\{ \itexarray{ \mathbb{Z} &\vert& n = 0 \\ G^{ab}_{ADE} &\vert& n = 1 \, mod \, 4 \\ \mathbb{Z}/{\vert G_{ADE}\vert} &\vert& n= 3 \,mod\, 4 \\ 0 &\vert& \text{otherwise} } \right. \end{displaymath} \end{prop} For pointers to proofs see for instance \hyperlink{EpaGanter16}{Epa-Ganter 16, section 4}. \begin{remark} \label{}\hypertarget{}{} In discussion of [[11-dimensional supergravity]] on [[spacetimes]] with [[ADE-singularities]], the special case \begin{displaymath} \underset{ \simeq H^3( \mathbb{C}^4 \sslash G_{ADE}, U(1)) }{ \underbrace{ H^4_{grp}(G_{ADE}, \mathbb{Z}) }} \;\simeq\; \mathbb{Z}/{\vert G_{ADE} \vert } \end{displaymath} of Prop. \ref{GroupCohomologyOfFiniteSubgroupsOfSU2}, regarded as expressing [[orbifold cohomology]] of an [[ADE singularity]], as shown under the brace, witnesses the possible [[torsion subgroup|torsion]] [[supergravity C-field]] [[flux]] of [[M5-branes]] [[wrapped brane|wrapped]] on torsion homology 3-cycles (``[[discrete torsion]]'', see \href{discrete+torsion#AharonyBergmanJafferis08}{Aharony-Bergman-Jafferis 08, p. 8} and \href{discrete+torsion#BDHKMMS01}{BDHKMMS 01, section 4.6.2}). \end{remark} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[regular polytope]], [[regular polyhedron]] \item [[ADE singularity]] \item [[McKay correspondence]] \item [[Platonic 2-group]] \item [[wallpaper group]] \end{itemize} \hypertarget{References}{}\subsection*{{References}}\label{References} \hypertarget{finite_subgroups_of__and_}{}\subsubsection*{{Finite subgroups of $SO(3)$ and $Spin(3)$}}\label{finite_subgroups_of__and_} The classification in Theorem \ref{ClassificationOfFiniteSubgroupsOfSO3} goes back to \begin{itemize}% \item [[Felix Klein]], chapter I of \emph{Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade}, 1884, translated as \emph{Lectures on the Icosahedron and the Resolution of Equations of Degree Five} by George Morrice 1888, \href{https://archive.org/details/cu31924059413439}{online version} \end{itemize} Textbook accounts include \begin{itemize}% \item G. A. Miller, H. F. Blichfeldt, L. E. Dickson, \emph{Theory and applications of finite groups}, Dover, New York, 1916 \item [[Klaus Lamotke]], \emph{Regular Solids and Isolated Singularities}, Vieweg 1986 \item [[Elmer Rees]], \emph{Notes on Geometry}, Springer 2005 \end{itemize} see also \begin{itemize}% \item Javier Carrasco Serrano, \emph{Finite subgroups of $SL(2,\mathbb{C})$ and $SL(3,\mathbb{C})$}, Warwick 2014 (\href{https://homepages.warwick.ac.uk/~masda/McKay/Carrasco_Project.pdf}{pdf}) \end{itemize} Complete proof of the classification of the finite subgroups of $SO(3)$ is also spelled out in \begin{itemize}% \item Maud De Visscher, \emph{\href{http://www.staff.city.ac.uk/maud.devisscher.1/GS/}{Groups and Symmetry}} lecture notes handout: \emph{Classification of finite rotation groups} (\href{http://www.staff.city.ac.uk/maud.devisscher.1/GS/classif_rotation.pdf}{pdf}) \end{itemize} Based on the classification of the finite subgroups of $SO(3)$, full proof of that of the finite subgroups of $SU(2)$ is spelled out in \begin{itemize}% \item Adam Keenan, \emph{Which finite groups act freely on spheres?}, 2003 (\href{http://www.math.utah.edu/~keenan/actions.pdf}{pdf}) \end{itemize} See also \begin{itemize}% \item GroupProps \emph{} \end{itemize} Discussion of the [[lattice]] of [[subgroups]] of the three exceptional subgroups is in \begin{itemize}% \item Daciberg Lima Gonçalves, John Guaschi, \emph{The Subgroups of the Binary Polyhedral Groups}, Appendix of \emph{The classification of the virtually cyclic subgroups of the sphere braid groups}, Springer (Ed.) (2013) 112 (\href{https://arxiv.org/abs/1110.6628}{arXiv:1110.6628}, \href{https://link.springer.com/content/pdf/bbm%3A978-3-319-00257-6%2F1.pdf}{pdf}) \end{itemize} The [[universal higher central extension]] of finite subgroups of $SU(2)$ (``[[Platonic 2-groups]]'') are discussed in \begin{itemize}% \item [[Narthana Epa]], [[Nora Ganter]], \emph{Platonic and alternating 2-groups}, Higher Structures 1(1):122-146, 2017 (\href{http://arxiv.org/abs/1605.09192}{arXiv:1605.09192}) \end{itemize} \hypertarget{finite_subgroups_of__2}{}\subsubsection*{{Finite subgroups of $O(4)$}}\label{finite_subgroups_of__2} \begin{itemize}% \item [[Patrick du Val]], \emph{Homographies, Quaternions and Rotations}, Oxford Mathematical Monographs, Clarendon Press (1964) also(?): Journal of the London Mathematical Society, Volume s1-40, Issue 1 (1965) (\href{https://doi.org/10.1112/jlms/s1-40.1.569b}{doi:10.1112/jlms/s1-40.1.569b}) \item [[John Conway]], D. A. Smith, \emph{On quaternions and octonions: their geometry, arithmetic and symmetry} A K Peters Ltd., Natick, MA, 2003 \item Paul de Medeiros, [[José Figueroa-O'Farrill]], appendix B of \emph{Half-BPS M2-brane orbifolds}, Adv. Theor. Math. Phys. Volume 16, Number 5 (2012), 1349-1408. (\href{http://arxiv.org/abs/1007.4761}{arXiv:1007.4761}, \href{https://projecteuclid.org/euclid.atmp/1408561553}{Euclid}) \item J. F. Sadoc, R. Mosseri, \emph{Icosahedral order, curved space and quasicrystals}, in Jaric, Gratias (eds.) \emph{Extended icosahedral structures}, 1989 (\href{https://books.google.co.uk/books?id=HWyIUglWeXsC&pg=PA172&lpg=PA172#v=onepage&q&f=false}{GoogleBooks}) \end{itemize} \hypertarget{finite_subgroups_of__3}{}\subsubsection*{{Finite subgroups of $O(5)$}}\label{finite_subgroups_of__3} \begin{itemize}% \item Mattia Mecchia, Bruno Zimmermann, \emph{On finite groups acting on homology 4-spheres and finite subgroups of $SO(5)$}, Topology and its Applications 158.6 (2011): 741-747 (\href{https://arxiv.org/abs/1001.3976}{arXiv:1001.3976}) \end{itemize} [[!redirects finite rotation groups]] [[!redirects classification of the finite rotation groups]] [[!redirects finite subgroup of SO(3)]] [[!redirects finite subgroups of SO(3)]] [[!redirects finite subgroup of SU(2)]] [[!redirects finite subgroups of SU(2)]] [[!redirects finite subgroup of Spin(3)]] [[!redirects finite subgroups of Spin(3)]] [[!redirects finite subgroup of O(4)]] [[!redirects finite subgroups of O(4)]] [[!redirects finite subgroup of SO(4)]] [[!redirects finite subgroups of SO(4)]] [[!redirects finite subgroup of O(5)]] [[!redirects finite subgroups of O(5)]] [[!redirects finite subgroup of SO(5)]] [[!redirects finite subgroups of SO(5)]] [[!redirects classification of finite rotation groups]] [[!redirects classifications of finite rotation groups]] \end{document}