\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{fixed-point combinator} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{type_theory}{}\paragraph*{{Type theory}}\label{type_theory} [[!include type theory - contents]] \hypertarget{fixedpoint_combinators}{}\section*{{Fixed-point combinators}}\label{fixedpoint_combinators} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{implementing_general_recursion}{Implementing general recursion}\dotfill \pageref*{implementing_general_recursion} \linebreak \noindent\hyperlink{existence}{Existence}\dotfill \pageref*{existence} \linebreak \noindent\hyperlink{unityped_calculus}{Unityped $\lambda$-calculus}\dotfill \pageref*{unityped_calculus} \linebreak \noindent\hyperlink{combinatory_logic}{Combinatory logic}\dotfill \pageref*{combinatory_logic} \linebreak \noindent\hyperlink{typed_calculus}{Typed $\lambda$-calculus}\dotfill \pageref*{typed_calculus} \linebreak \noindent\hyperlink{related_pages}{Related pages}\dotfill \pageref*{related_pages} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[combinatory logic]], in the [[∞-calculus]], or more generally in [[type theory]], a \emph{fixed-point [[combinator]]} is a [[term]] $Y$ which, when [[function application|applied]] to a term $n$, yields a term $Y n$ that is a fixed-point of $n$: \begin{displaymath} n (Y n) = Y n . \end{displaymath} This equality is usually a directed [[beta-reduction]] as follows: \begin{displaymath} Y n \to_\beta n (Y n) . \end{displaymath} \hypertarget{implementing_general_recursion}{}\subsection*{{Implementing general recursion}}\label{implementing_general_recursion} When ``programming'' in any of these systems, a fixed-point combinator serves as a mechanism for implementing general [[recursion]]. When writing a [[recursive function]] in a standard [[programming language]], such as the [[factorial]] \begin{verbatim}def fact(n:nat) : nat = { if (n == 0) { return 1 } else { return n * fact(n-1) } }\end{verbatim} one generally calls the function being defined inside of its own body. This is not possible for a combinator or a lambda-term to do directly, but it can be implemented using a fixed-point combinator. One first defines a ``generator'' which takes ``the function to call recursively'' as an additional argument: \begin{verbatim}def genfact(f : nat -> nat)(n:nat) : nat = { if (n == 0) { return 1 } else { return n * f(n-1) } }\end{verbatim} and then ``closes the loop'' by applying the fixed-point combinator. That is, we [[currying|curry]] {\colorbox[rgb]{1.00,0.93,1.00}{\tt genfact}} to view it as an [[endofunction]] of {\colorbox[rgb]{1.00,0.93,1.00}{\tt nat\char32\char45\char62\char32nat}} (an [[operator]]) and then construct its fixed point, \begin{displaymath} fact = Y(genfact). \end{displaymath} The directed $\beta$-reduction version of the fixed-point property of $Y$ then implements the process of calling a function recursively: \begin{displaymath} \begin{aligned} fact(3) &= Y(genfact)(3)\\ &\to_\beta genfact(Y(genfact))(3)\\ &\to_\beta 3 * Y(genfact)(2)\\ &\to_\beta 3 * genfact(Y(genfact))(2)\\ &\to_\beta 3 * 2 * Y(genfact)(1)\\ &\to_\beta 3 * 2 * genfact(Y(genfact))(1)\\ &\to_\beta 3 * 2 * 1 * Y(genfact)(0)\\ &\to_\beta 3 * 2 * 1 * genfact(Y(genfact))(0)\\ &\to_\beta 3 * 2 * 1 * 1\\ &= 6 \end{aligned} \end{displaymath} In particular, observe that because general recursion allows the definition of nonterminating functions, so does a fixed-point combinator. An obvious example is the fixed point of the identity function $I$, which reduces as follows: \begin{displaymath} Y I \to_\beta I(Y I) \to_\beta Y I \to_\beta I(Y I) \to_\beta Y I \to_\beta \cdots \end{displaymath} \hypertarget{existence}{}\subsection*{{Existence}}\label{existence} There are many ways of constructing or otherwise obtaining a fixed-point combinator, varying with the formal system in which one works. \hypertarget{unityped_calculus}{}\subsubsection*{{Unityped $\lambda$-calculus}}\label{unityped_calculus} In the [[unityped ∞-calculus]], a traditional construction (due to Curry) is \begin{displaymath} Y = \lambda n. (\lambda s. n (s s)) (\lambda s. n (s s)) \end{displaymath} For a given term $n$, put $t = \lambda s. n (s s)$. We then have $Y n = t t$, and we also have \begin{displaymath} \array { Y n & = & (\lambda s. n (s s)) (\lambda s. n (s s)) \\ & = & (\lambda s. n (s s)) (t) \\ & = & n (t t) \\ & = & n (Y n) } \end{displaymath} so that $Y n$ is a fixed point of $n$. Compare [[Lawvere fixed point theorem|Lawvere's proof]] of [[Cantor's theorem]]. Another construction is due to (\hyperlink{Klop07}{Klop 07}): \begin{displaymath} Y_K = LLLLLLLLLLLLLLLLLLLLLLLLLL \end{displaymath} where \begin{displaymath} L = \lambda abcdefghijklmnopqstuvwxyzr. r (thisisafixedpointcombinator) \end{displaymath} Note that $Y_K$ is $L$ repeated 26 times, and the string $thisisafixedpointcombinator$ contains 27 characters. Thus \begin{displaymath} \array { Y_K n & = & (\lambda r. r(LLLLLLLLLLLLLLLLLLLLLLLLLLr)) n \\ & = & (\lambda r. r(Y_K r)) n \\ & = & n (Y_K n) } \end{displaymath} \hypertarget{combinatory_logic}{}\subsubsection*{{Combinatory logic}}\label{combinatory_logic} In [[combinatory logic]] (based on the combinators $S$, $K$, and $I$), one construction is \begin{displaymath} Y = S(K (S I I))(S(S (K S)(S(K K)I)))(K (S I I)) \end{displaymath} following the standard formulas $S x y z = (x z)(y z)$, $K x y = x$ and $I x = x$, and where bracketings left unspecified are by convention to the left. For a derivation of this, see the article on \href{http://ncatlab.org/nlab/show/partial+combinatory+algebra#examples_of_combinators_8}{combinatory algebra}. \hypertarget{typed_calculus}{}\subsubsection*{{Typed $\lambda$-calculus}}\label{typed_calculus} In many forms of (multi-) \emph{typed} $\lambda$-calculus (and more general type theory), a fixed-point combinator cannot be constructed, because there is no type whose terms can be applied to themselves. This is usually intentional, because it avoids the nontermination inherent in the existence of a fixed-point combinator. However, it is possible to add a fixed-point combinator to typed $\lambda$-calculus by fiat, obtaining a typed system which includes general recursion and hence nontermination. This is appropriate for some forms of [[domain semantics]], and for modeling some real-world programming languages ([[Haskell]] is a notable example). \hypertarget{related_pages}{}\subsection*{{Related pages}}\label{related_pages} \begin{itemize}% \item [[Löb's theorem]] \item [[Lawvere fixed point theorem]] \item [[looping combinator]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Jan Willem Klop, \emph{\href{http://www.cs.ru.nl/barendregt60/essays/klop/}{New Fixed Point Combinators from Old}}, in \newline \emph{Reflections on Type Theory, Lambda Calculus, and the Mind: Essays Dedicated to Henk Barendregt on the Occasion of his 60th Birthday} \end{itemize} [[!redirects fixed-point combinator]] [[!redirects fixed-point combinators]] \end{document}