\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{flabby sheaf} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{characterization_using_the_internal_language}{Characterization using the internal language}\dotfill \pageref*{characterization_using_the_internal_language} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A [[sheaf]] $F$ of [[set]]s on (the [[category of open subsets]] of) a [[topological space]] $X$ is \textbf{flabby} (flasque) if for any open subset $U\subset X$, the restriction morphism $F(X)\to F(U)$ is [[surjection|onto]]. Equivalently, for any open $U\subset V\subset X$ the restriction $F(V)\to F(U)$ is surjective. In mathematical literature in English, the original French word \textbf{flasque} is still often used instead of flabby here. The concept generalizes in a straightforward manner to flabby sheaves on [[locales]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{itemize}% \item Flabbiness is a local property: if $F|_U$ is flabby for every sufficiently small open subset, then $F$ is flabby. \item Given a continuous map $f:X\to Y$ and a flabby sheaf $F$ on $X$, the [[direct image]] sheaf $f_* F : V\mapsto F(f^{-1}V)$ is also flabby. \item Any [[exact sequence]] of sheaves of [[abelian groups]] $0\to F_1\to F_2\to F_3\to 0$ in which $F_1$ is flabby, is also an exact sequence in the category of presheaves (the exactness for stalks implies exactness for groups of sections over any fixed open set). As a corollary, if $F_1$ and $F_2$ are flabby, then $F_3$ is flabby; and if $F_1$ and $F_3$ are flabby, so is $F_2$. \end{itemize} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} An archetypal example is the sheaf of all set-theoretic (not necessarily continuous) [[sections]] of a [[bundle]] $E\to X$; regarding that every sheaf over a topological space is the sheaf of sections of an [[etale space]], every sheaf can be embedded into a flabby sheaf $C^0(X,F)$ defined by \begin{displaymath} U \mapsto \prod_{x\in U} F_x \end{displaymath} where $F_x$ denotes the [[stalk]] of $F$ at point $x$. This construction assumes that all stalks $F_x$ are inhabited, and also that the law of excluded middle is available. In the absence of either, the refined construction \begin{displaymath} U \mapsto \prod_{x\in U} P_{\leq 1}(F_x) \end{displaymath} works, where $P_{\leq 1}(F_x)$ is the set of subsingletons of $F_x$. \hypertarget{characterization_using_the_internal_language}{}\subsection*{{Characterization using the internal language}}\label{characterization_using_the_internal_language} \begin{prop} \label{}\hypertarget{}{} Let $F$ be a sheaf on a topological space (or [[locale]]) $X$. Then the following statements are equivalent. \begin{enumerate}% \item $F$ is flabby. \item For any open subset $U \subseteq X$ and any section $s \in F(U)$ there is an open covering $X = \bigcup_i V_i$ such that, for each $i$, there is an extension of $s$ to $U \cup V_i$ (that is, a section $s' \in F(U \cup V_i)$ such that $s'|_U = s$). (If $X$ is a space instead of a locale, this can be equivalently formulated as follows: For any open subset $U \subseteq X$, any section $s \in F(U)$, and any point $x \in X$, there is an open neighbourhood $V$ of $x$ and an extension of $s$ to $U \cup V$ (that is, a section $s' \in F(U \cup V)$ such that $s'|_U = s$).) \item From the point of view of the [[internal language]] of the [[topos]] of sheaves over $X$, for any [[subsingleton]] $K \subseteq F$ there exists an element $s : F$ such that $s \in K$ if $K$ is [[inhabited]]. More precisely, \begin{displaymath} Sh(X) \models \forall K \subseteq F. (\forall s,s':K. s = s') \Rightarrow \exists s:F. (K \text{ is inhabited} \Rightarrow s \in K). \end{displaymath} \item The canonical map $F \to \mathcal{P}_{\leq 1}(F), s \mapsto \{s\}$ is [[final functor|final]] from the internal point of view, that is \begin{displaymath} Sh(X) \models \forall K : \mathcal{P}_{\leq 1}(F). \exists s : F. K \subseteq \{s\}. \end{displaymath} Here $\mathcal{P}_{\leq 1}(F)$ is the object of subsingletons of $F$. \end{enumerate} \end{prop} \begin{proof} The implication ``1 $\Rightarrow$ 2'' is trivial. The converse direction uses a typical argument with [[Zorn's lemma]], considering a maximal extension. The equivalence ``$2 \Leftrightarrow 3$'' is routine, using the [[Kripke-Joyal semantics]] to interpret the internal statement. We omit details for the time being. Condition 4 is a straightforward reformulation of condition 3. \end{proof} For a more detailed discussion, see \hyperlink{Blechschmidt18}{Blechschmidt}. \begin{remark} \label{}\hypertarget{}{} Condition 2 of the proposition is, unlike the standard definition of flabbiness given at the top of the article, manifestly local. Also the equivalence with condition 3 and condition 4 is [[intuitionistic logic|constructively valid]]. Therefore one could consider to adopt condition 2 as the definition of flabbiness. \end{remark} \begin{remark} \label{}\hypertarget{}{} The object $\mathcal{P}_{\leq 1}(F)$ of subsingletons of $F$ can be interpreted as the object of [[partial map classifier|``partially-defined elements'']] of $F$. The sheaf $F$ is flabby if and only if any such partially-defined element can be refined to an honest element of $F$. \end{remark} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[sheaf]] \item [[abelian sheaf cohomology]] \begin{itemize}% \item [[soft sheaf]] \item [[fine sheaf]] \item \textbf{flabby sheaf} \end{itemize} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Flabby sheaves were probably first studied in [[Tohoku]], where flabby [[resolution]]s were also considered. A classical reference is \begin{itemize}% \item [[Roger Godement]] \emph{Topologie Algébrique et Théorie des Faisceaux}. Actualités Sci. Ind. No. 1252. Publ. Math. Univ. Strasbourg. No. 13 Hermann, Paris 1958. \end{itemize} See also \begin{itemize}% \item [[Günter Tamme]], section I 3.5 of \emph{[[Introduction to Étale Cohomology]]} \item \href{https://en.wikipedia.org/wiki/Injective_sheaf#Flasque_or_flabby_sheaves}{wikipedia} \item \href{https://www.encyclopediaofmath.org/index.php/Flabby_sheaf}{EOM} \end{itemize} Work relating flabby sheaves to the internal logic of a topos include: \begin{itemize}% \item [[Anders Kock]], \emph{Algebras for the Partial Map Classifier Monad}, in Category Theory. Proceedings of the International Conference held in Como, Italy, July 22–28, 1990, \href{http://home.math.au.dk/kock/jonna5.pdf}{pdf} \item [[Ingo Blechschmidt]], \emph{Flabby and injective objects in toposes}, \href{https://arxiv.org/abs/1810.12708}{arXiv:1810.12708} \item [[Martin Escardo]], \emph{Injectives types in univalent mathematics}, \href{https://arxiv.org/abs/1903.01211}{arxiv:1903.01211} \end{itemize} category: sheaf theory [[!redirects flasque sheaf]] [[!redirects flabby sheaves]] [[!redirects flasque sheaves]] \end{document}