\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{flat module} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebra}{}\paragraph*{{Algebra}}\label{algebra} [[!include higher algebra - contents]] \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{InTermsOfExactFunctorsAndTorFunctors}{In terms of exact functors and Tor-functors}\dotfill \pageref*{InTermsOfExactFunctorsAndTorFunctors} \linebreak \noindent\hyperlink{InTermsOfIdentities}{Explicitly in terms of identities}\dotfill \pageref*{InTermsOfIdentities} \linebreak \noindent\hyperlink{for_more_general_rings}{For more general rings}\dotfill \pageref*{for_more_general_rings} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{EquivalentCharacterizations}{Equivalent characterizations}\dotfill \pageref*{EquivalentCharacterizations} \linebreak \noindent\hyperlink{relation_to_projective_modules}{Relation to projective modules}\dotfill \pageref*{relation_to_projective_modules} \linebreak \noindent\hyperlink{relation_to_locally_free_modules}{Relation to (locally) free modules}\dotfill \pageref*{relation_to_locally_free_modules} \linebreak \noindent\hyperlink{Examles}{Examples}\dotfill \pageref*{Examles} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A [[module]] over a [[ring]] $R$ is called \emph{flat} if its satisfies one of many equivalent conditions, the simplest to state of which is maybe: forming the [[tensor product of modules]] with $N$ preserves [[submodules]]. Under the dual geometric interpretation of \href{module#RelationToVectorBundlesInIntroduction}{modules as generalized vector bundles} over the space on which $R$ is the ring of functions, flatness of a module is essentially the \emph{local triviality} of these bundles, hence in particular the fact that the [[fibers]] of these bundles do not change, up to isomorphism. See prop. \ref{ForFinitelyGeneratedFlatIsLocallyFree} below for the precise statement. On the other hand there is \textbf{no} relation to ``flat'' as in [[flat connection]] on such a bundle. \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} We first state the definition and its equivalent reformulations over a [[commutative ring]] abstractly in \emph{\hyperlink{InTermsOfExactFunctorsAndTorFunctors}{In terms of exact functors and Tor-functors}}. Then we give an explicit element-wise characterization in \emph{\hyperlink{InTermsOfIdentities}{Explicitly in terms of identities}}. Much of this discussion also works in the more general case where the ring is not-necessarily taken to be commutative and not necessarily required to be equipped with a unit, this we indicate in \emph{\hyperlink{spring}{For more general rings}}. \hypertarget{InTermsOfExactFunctorsAndTorFunctors}{}\subsubsection*{{In terms of exact functors and Tor-functors}}\label{InTermsOfExactFunctorsAndTorFunctors} Let $R$ be a [[commutative ring]]. \begin{defn} \label{FlatModule}\hypertarget{FlatModule}{} An $R$-[[module]] $N$ is \textbf{flat} if [[tensor product of modules|tensoring]] with $N$ over $R$ as a [[functor]] from $R$[[Mod]] to itself \begin{displaymath} (-)\otimes_R N : R Mod \to R Mod \end{displaymath} is an [[exact functor]] (sends [[short exact sequences]] to short exact sequences). \end{defn} \begin{defn} \label{FaithfullyFlatModule}\hypertarget{FaithfullyFlatModule}{} A module as above is \emph{faithfully flat} if it is flat and tensoring in addition \emph{reflects exactness}, hence if the tensored sequence is exact if and only if the original sequence was. \end{defn} \begin{remark} \label{ImmediateReformulationOfFlatness}\hypertarget{ImmediateReformulationOfFlatness}{} The condition in def. \ref{FlatModule} has the following immediate equivalent reformulations: \begin{enumerate}% \item $N$ is flat precisely if $(-)\otimes_R N$ is a [[left exact functor]], because tensoring with any module is generally already a [[right exact functor]]; \item $N$ is flat precisely if $(-)\otimes_R N$ sends [[monomorphisms]] ([[injections]]) to monomorphisms, because for a right exact functor to also be left exact the only remaining condition is that it preserves the monomorphisms on the left of a [[short exact sequence]]; \item $N$ is flat precisely if $(-)\otimes_R N$ is a [[flat functor]], because [[Mod]] is [[finitely complete category|finitely complete]]; \item $N$ is flat precisely if the degree-1 [[Tor]]-[[functor]] $Tor_1^{R Mod}(-,N)$ is zero, because by the general properties of [[derived functors in homological algebra]], $L_1 F$ is the obstruction to a [[right exact functor]] $F$ being left exact; \item $N$ is flat precisely if all higher [[Tor]] functors $Tor_{\geq 1}(R Mod)(-,N)$ are zero, because the higher [[derived functor in homological algebra|derived functors]] of an [[exact functor]] vanish; \item $N$ is flat precisely if $N$ is an [[acyclic object]] with respect to the tensor product functor; because the [[Tor]] functor is symmetric in both arguments and an object is called tensor-[[acyclic object]] if all its positive-degree $Tor$-groups vanish. \end{enumerate} \end{remark} The condition in def. \ref{FlatModule} also has a number of not so immediate equivalent reformulations. These we discuss in detail below in \emph{\hyperlink{EquivalentCharacterizations}{Equivalent characterizations}}. One of them gives an explicit characterization of flat modules in terms of relations beween their elements. An exposition of this we give now in \emph{\hyperlink{InTermsOfIdentities}{In terms of identities}}. \hypertarget{InTermsOfIdentities}{}\subsubsection*{{Explicitly in terms of identities}}\label{InTermsOfIdentities} There is a characterisation of flatness that says that a left $A$-module $M$ is flat if and only if ``everything (that happens in $M$) happens for a reason (in $A$)''. We indicate now what this means. Below in prop. \ref{RelationsFromCharacterizationonIdealInclusion} it is shown how this is equivalent to def. \ref{FlatModule} above. The meaning of this is akin to the existence of [[basis of a vector space|bases in vector spaces]]. In a [[vector space]], say $V$, if we have an identity of the form $\sum_i \alpha_i v_i = 0$ then we cannot necessarily assume that the $\alpha_i$ are all zero. However, if we choose a basis then we can write each $v_i$ in terms of the basis elements, say $v_i = \sum_j \beta_{i j} u_j$, and substitute in to get $\sum_{i j} \alpha_i \beta_{i j} u_j = 0$. Now as $\{u_j\}$ forms a basis, we can deduce from this that for each $j$, $\sum_i \alpha_i \beta_{i j} = 0$. These last identities happen in the coefficient field, which is standing in place of $A$ in the analogy. When translating this into the language of modules we cannot use bases so we have to be a little more relaxed. The following statement is the right one. Suppose there is some identity in $M$ of the form $\sum_i a_i m_i = 0$ with $m_i \in M$ and $a_i \in A$. Then there is a family $\{n_j\}$ in $M$ such that every $m_i$ can be written in the form $m_i = \sum_j b_{i j} n_j$ and the coefficients $b_{i j}$ have the property that $\sum_i a_i b_{i j} = 0$. The module $M$ being flat is equivalent to being able always to do this. There is an alternative way to phrase this which is less element-centric. The elements $m_i$ correspond to a [[morphism]] into $M$ from a [[free module]], say $m \colon F \to M$. The $a_i$ correspond to a morphism $a \colon F \to F$, multiplying the $i$th term by $a_i$. That we have the identity $\sum_i a_i m_i = 0$ says that the composition $m a$ is zero, or that $m \colon F \to M$ factors through the [[coequaliser]] of $a$ and $0$. Now we consider the elements $n_j$. These define another morphism from a free module, say $n \colon E \to M$. That the $m_i$ can be expressed in terms of the $n_j$ says that the morphism $m$ factors through $n$. That is, there is a morphism $b \colon F \to M$ such that $m = n b$. We therefore have two factorisations of $m$: one through $n$ and one through the [[cokernel]] $\coker a$. The question is as to whether these have any relation to each other. In particular, does $\coker a \to M$ factor through $n$? We can represent all of this in the following diagram. Saying that $M$ is flat says that this lift always occurs. Taking this a step further, we consider the [[filtered category|filtered family]] of all finite [[subsets]] of $M$. This generates a filtered family of [[finitely generated module|finitely generated]] [[free modules]] with compatible morphisms to $M$. So there is a morphism from the [[colimit]] of this family to $M$. This morphism is [[surjection|surjective]] by construction. To show that it is [[injection|injective]], we need to show that any element in one of the terms in the family that dies by the time it reaches $M$ has actually died on the way. This is precisely what the above characterisation of flatness is saying: the element corresponding to $\sum_i a_i m_i$ that dies in $M$ is already dead by the time it reaches $E$. We have thus arrived at the following result: \begin{theorem} \label{filtfree}\hypertarget{filtfree}{} A module is flat if and only if it is a [[filtered colimit]] of [[free modules]]. \end{theorem} This observation (Wraith, Blass) can be put into the more general context of modelling [[geometric theory|geometric theories]] by [[geometric morphism|geometric morphisms]] from their [[classifying topos|classifying toposes]], or equivalently, certain [[flat functor|flat functors]] from [[site|sites]] for such topoi. \hypertarget{for_more_general_rings}{}\subsubsection*{{For more general rings}}\label{for_more_general_rings} Even if the [[ring]] $R$ is not necessarily commutative and not necessarily unital, we can say: A left $R$-[[module]] is flat precisely if the [[tensor product of modules|tensoring]] functor \begin{displaymath} (-)\otimes_R \colon Mod_R \to Ab \end{displaymath} from \emph{right} $R$ modules to [[abelian groups]] is an [[exact functor]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{EquivalentCharacterizations}{}\subsubsection*{{Equivalent characterizations}}\label{EquivalentCharacterizations} By def. \ref{FlatModule}, or its immediate consequence, remark \ref{ImmediateReformulationOfFlatness}. $N \in R Mod$ is flat if for every injection $i \colon A \hookrightarrow$ also $i \otimes_R N \colon A \otimes_R N \to B \otimes_R N$ is an injection. The following proposition says that this may already be checked on just a very small subclass of injections. \begin{theorem} \label{CharacterizationOnIdealInclusions}\hypertarget{CharacterizationOnIdealInclusions}{} An $R$-module $N$ is flat already if for all inclusions $I \hookrightarrow R$ of a [[finitely generated module|finitely generated]] [[ideal]] into $R$, regarded as a module over itself, the induced morphism \begin{displaymath} I \otimes_R N \to R \otimes_R N \simeq N \end{displaymath} is an injection. \end{theorem} \begin{proof} (\ldots{}) \end{proof} \begin{prop} \label{RelationsFromCharacterizationonIdealInclusion}\hypertarget{RelationsFromCharacterizationonIdealInclusion}{} A module $N$ is flat precisely if for every finite linear combination of zero, $\sum_i r_i n_i = 0\in N$ with $\{r_i \in R\}_i$, $\{n_i \in N\}$ there are elements $\{\tilde n_j \in N\}_j$ and linear combinations \begin{displaymath} n_i = \sum_j b_{i j} \tilde n_j \;\;\in N \end{displaymath} with $\{b_{i j} \in R\}_{i,j}$ such that for all $j$ we have \begin{displaymath} \sum_i r_i b_{i j} = 0\;\;\; \in R \,. \end{displaymath} \end{prop} \begin{proof} A finite set $\{r_i \in R\}_i$ corresponds to the inclusion of a finitely generated ideal $I \hookrightarrow R$. By theorem \ref{CharacterizationOnIdealInclusions} $N$ is flat precisely if $I \otimes_R N \to N$ is an injection. This in turn is the case precisely if the only element of the tensor product $I \otimes_R R$ that is 0 in $R \otimes_R N = N$ is already 0 on $I \otimes_R N$. Now by definition of [[tensor product of modules]] an element of $I \otimes_R N$ is of the form $\sum_i (r_i ,n_i)$ for some $\{n_i \in N\}$. Under the inclusion $I \otimes_R N \to N$ this maps to the actual linear combination $\sum_i r_i n_i$. This map is injective if whenever this linear combination is 0, already $\sum_i (r_i, n_i)$ is 0. But the latter is the case precisely if this is equal to a combination $\sum_j (\tilde r_j , \tilde n_j)$ where all the $\tilde r_j$ are 0. This implies the claim. \end{proof} \hypertarget{relation_to_projective_modules}{}\subsubsection*{{Relation to projective modules}}\label{relation_to_projective_modules} \begin{prop} \label{ProjectiveModulesAreFlat}\hypertarget{ProjectiveModulesAreFlat}{} Every [[projective module]] is flat. \end{prop} \begin{proof} Clearly every ring $R$ is a flat module over itself, and [[direct sums]] as well as direct summands of flat modules are flat. Hence direct summands of [[free modules]] are flat, and these are precisely the projective modules (\href{projective+module#ProjectiveIsPreciselyDirectSummandOfFreeModule}{prop.}) \end{proof} \begin{prop} \label{}\hypertarget{}{} \textbf{([[Lazard's criterion]])} A module is flat if and only if it is a [[filtered colimit]] of [[free modules]]. \end{prop} This is due to (\hyperlink{Lazard}{Lazard (1964)}). \begin{proof} (\ldots{}) For the moment see the above discussion. (\ldots{}) \end{proof} \hypertarget{relation_to_locally_free_modules}{}\subsubsection*{{Relation to (locally) free modules}}\label{relation_to_locally_free_modules} \begin{defn} \label{LocallyFreeModule}\hypertarget{LocallyFreeModule}{} An $R$-module $N$ over a [[Noetherian ring]] $R$ is called a \textbf{locally free module} if there is a [[Zariski topology|cover]] by [[prime ideals]] $I \hookrightarrow R$ such that the [[localization of a module|localization]] $N_I$ is a [[free module]] over the [[localization of a ring|localization]] $R_I$. \end{defn} \begin{prop} \label{ForFinitelyGeneratedFlatIsLocallyFree}\hypertarget{ForFinitelyGeneratedFlatIsLocallyFree}{} For $R$ a [[Noetherian ring]] and $N$ a [[finitely generated module]] over $R$, $N$ is flat precisely if it is [[locally free module]], def. \ref{LocallyFreeModule}. \end{prop} By \hyperlink{RaynaudGruson}{Raynaud-Gruson, 3.4.6 (part I)} \begin{prop} \label{}\hypertarget{}{} If \begin{enumerate}% \item $R$ is a [[local ring]], \item $N$ is a [[finitely generated module]], \item $N$ is a flat module \end{enumerate} then $N$ is a [[free module]]. \end{prop} This is \hyperlink{Matsumara}{Matsumara, Theorem 7.10} \hypertarget{Examles}{}\subsection*{{Examples}}\label{Examles} \begin{example} \label{}\hypertarget{}{} An [[abelian group]] is flat (regarded as a $\mathbb{Z}$-module) precisely if it is [[torsion subgroup|torsion-free]]. \end{example} \begin{proof} By the general discussion at [[derived functor in homological algebra]], the obstruction to $A \in Ab$ being flat are the first [[Tor]]-groups $Tor_1^{\mathbb{Z}}(-,A)$. By the discussion at \emph{\href{Tor#RelationToTorsionGroups}{Tor -- relation to torsion subgroups}} these a [[filtered colimits]] and [[direct sums]] of the [[torsion subgroups]] of $A$. In particular for $Tor_1^\mathbb{Z}(\mathbb{Z}_n,A)$ is the $n$-torsion subgroup of $A$. Hence $Tor_1^\mathbb{Z}(-,A)$ vanishes and hence $A$ is flat precisely if all torsion subgroups of $A$ are trivial. \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[flat morphism of schemes]] \item [[flat resolution lemma]] \item [[projective object]], [[projective presentation]], [[projective cover]], [[projective resolution]] \item [[injective object]], [[injective presentation]], [[injective envelope]], [[injective resolution]] \begin{itemize}% \item [[injective module]] \end{itemize} \item [[free object]], [[free resolution]] \item flat object, [[flat resolution]] \item [[free module]] $\Rightarrow$ [[projective module]] $\Rightarrow$ \textbf{flat module} $\Rightarrow$ [[torsion-free module]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Original articles include \begin{itemize}% \item Shizuo Endo, \emph{On flat modules over commutative rings}, J. Math. Soc. Japan Volume 14, Number 3 (1962), 284-291. (\href{http://projecteuclid.org/euclid.jmsj/1261060583}{EUCLID}) \item Michel Raynaud, Laurent Gruson, \emph{Crit\`e{}res de platitude et de projectivit\'e{}}, Techniques de ``platification'' d'un module. Invent. Math. 13 (1971), 1--89. \end{itemize} \begin{itemize}% \item S. Jondrup, \emph{Flat and projective modules}, Math, Scand. 43 (1978) (\href{http://www.mscand.dk/article.php?id=2456}{pdf}) \end{itemize} The characterization of flat modules as filtered colimits of [[projective modules]] is due to \begin{itemize}% \item [[Daniel Lazard]], \emph{Sur les modules plats} C. R. Acad. Sci. Paris 258, 6313--6316 (1964) \end{itemize} For a general account see for instance section 3.2 of \begin{itemize}% \item [[Charles Weibel]], \emph{[[An Introduction to Homological Algebra]]} \end{itemize} For more details see \begin{itemize}% \item Matsumura's CRT book \end{itemize} Lecture notes include \begin{itemize}% \item Arthur Ogus, \emph{Flatness -- a brief overview} (\href{http://math.berkeley.edu/~ogus/Math%20_256B--09/Supplements/flat.pdf}{pdf}) \end{itemize} Further resources include \begin{itemize}% \item MO discussion \emph{\href{http://mathoverflow.net/questions/33522/flatness-and-local-freeness}{flatness and local freeness}} \end{itemize} [[!redirects flat modules]] [[!redirects faithfully flat module]] [[!redirects faithfully flat modules]] \end{document}