\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{flavour anomaly} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{fields_and_quanta}{}\paragraph*{{Fields and quanta}}\label{fields_and_quanta} [[!include fields and quanta - table]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{Idea}{Idea}\dotfill \pageref*{Idea} \linebreak \noindent\hyperlink{StatisticalSignificance}{Statistical significance}\dotfill \pageref*{StatisticalSignificance} \linebreak \noindent\hyperlink{Outlook}{Status and Outlook}\dotfill \pageref*{Outlook} \linebreak \noindent\hyperlink{possible_models}{Possible models}\dotfill \pageref*{possible_models} \linebreak \noindent\hyperlink{Leptoquarks}{Leptoquarks and Grand unified theory}\dotfill \pageref*{Leptoquarks} \linebreak \noindent\hyperlink{PossibleModelsOther}{Other}\dotfill \pageref*{PossibleModelsOther} \linebreak \noindent\hyperlink{RelationToOtherAnomalies}{Relation to other anomalies}\dotfill \pageref*{RelationToOtherAnomalies} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{possible_explanationsmodels}{Possible explanations/models}\dotfill \pageref*{possible_explanationsmodels} \linebreak \noindent\hyperlink{general_eft_parameterization}{General EFT parameterization}\dotfill \pageref*{general_eft_parameterization} \linebreak \noindent\hyperlink{leptoquarks}{Leptoquarks}\dotfill \pageref*{leptoquarks} \linebreak \noindent\hyperlink{boson}{$Z'$-boson}\dotfill \pageref*{boson} \linebreak \noindent\hyperlink{other_2}{Other}\dotfill \pageref*{other_2} \linebreak \hypertarget{Idea}{}\subsection*{{Idea}}\label{Idea} In the current [[standard model of particle physics]] the [[fundamental particles]] in the three [[generations of fermions]] have identical properties from one generation to the next, except for their [[mass]], a state of affairs referred to as \emph{[[lepton]] universality}. A possible violation of lepton universality is called a \emph{[[flavour in particle physics|flavour]] anomaly}, which would be a sign of ``New Physics'' (NP) beyond the [[standard model of particle physics|standard model]]. See \hyperlink{Alonso19}{Alonso 19} for general introduction to an audience with basic background in [[quantum field theory]]. $\backslash$begin\{center\} $\backslash$begin\{imagefromfile\} ``file\_name'': ``bsllprocesses.jpg'', ``width'': 570 $\backslash$end\{imagefromfile\} $\backslash$end\{center\} \begin{quote}% graphics grabbed from \hyperlink{Cartelle18}{Cartelle 18} \end{quote} \hypertarget{StatisticalSignificance}{}\subsection*{{Statistical significance}}\label{StatisticalSignificance} Indications of flavour anomalies have been observed consistently and with increasing [[statistical significance]] around $2.5-3$ [[standard deviations|σ]] in [[B meson]] [[scattering amplitude|processes]] in various channels by a number of independent [[experiments]]: the [[LHCb experiment]], the [[Belle experiment]] and the [[BaBar experiment]]: $\backslash$begin\{center\} $\backslash$begin\{imagefromfile\} ``file\_name'': ``FlavourAnomaliesByChannels.jpg'', ``width'': 590 $\backslash$end\{imagefromfile\} $\backslash$end\{center\} \begin{quote}% table grabbed from \hyperlink{BGV19}{BGV 19} \end{quote} $\backslash$begin\{imagefromfile\} ``file\_name'': ``FlavourAnomalyAt4Sigma.jpg'', ``width'': 320, ``float'': ``right'', ``margin'': \{ ``top'': 0, ``right'': 10, ``bottom'': 10, ``left'': 0, ``unit'': ``px'' \} $\backslash$end\{imagefromfile\} The global (all channels and experiments combined) tension with the standard model by end of 2018 had [[statistical significance]] around $4.1$ [[standard deviations|σ]] (\hyperlink{StrumiaEtAl17}{Strumia et al. 17}, \hyperlink{Cartelle18}{Cartelle 18, slide 22/25}, \hyperlink{Dey18}{Dey 18, slide 16/23}, \hyperlink{HAMN18}{HAMN 18, p. 4}, \hyperlink{BouchardCaoOwen19}{Bouchard-Cao-Owen 19}). Various authors see the global tension (i.e. of all decay channels jointly) at over $5 \sigma$ (\hyperlink{CCDGMV17}{CCDGMV 17}, \hyperlink{CFMVV17}{CFMVV 17} \hyperlink{CGMS18}{CGMS 18}, \hyperlink{Dordei18}{Dordei 18, slide 12}), which traditionally qualifies as detection (see \href{statistical+significance#ParticlePhysics}{here}), some authors already quote $5.3 \sigma - 5.8 \sigma$ (\hyperlink{ACDGMM19}{ACDGMM 19}) or $5-6 \sigma$ (\hyperlink{KumarLondon19}{Kumar-London 19}, \hyperlink{Kumar19}{Kumar 19}). \begin{quote}% graphics grabbed from \hyperlink{Dey18}{Dey 18} \end{quote} This situation was confirmed with the completed measurements presented at \href{http://moriond.in2p3.fr/2019/}{Moriond 2019}, which showed (\hyperlink{Straub19}{Straub 19}, \hyperlink{Allanach19}{Allanach 19}) smaller discrepancy but also with smaller uncertainty, thus keeping the [[statistical significance]] essentially unaffected. But in 2019 \hyperlink{Caria19}{Caria 19, slide 9} report new numbers by [[Belle collaboration|Belle]] by which the previous [[statistical significance]] of $3.8 \sigma$ in the $R_D$ sector would decrease to $3.1 \sigma$ or $2.8 \sigma$ (\href{V_cb+puzzle#GambinoJungSchacht19}{Gambino-Jung-Schacht 19 (6)}). See \hyperlink{LHCb19}{LHCb 19, p. 2} for how the new numbers come about. Comprehensive assessments of the situation after \href{http://moriond.in2p3.fr/2019/}{Moriond 2019} are given in \hyperlink{AHMSN19}{AHMSN 19}, \hyperlink{DescotesGenon19}{Descotes-Genon 19}, \hyperlink{BardhanGhosh19}{Bardhan-Ghosh 19}, \hyperlink{Alguero19}{Alguero 19} and agree that the flavour anomalies have been confirmed: \begin{quote}% It appears the reason is that, given the amount of independent measurements ({\tt \symbol{126}}180!) a smaller deviation because of new physics is easier to accommodate than a large one. Thus the new measurements actually fit better with new physics. (Axel Maas, reporting from \href{https://indico.cern.ch/event/757995/}{ALPS2019}, \href{https://twitter.com/axelmaas/status/1120653147947655168}{tweet, 23 Apr 2019}) \end{quote} $\backslash$begin\{center\} $\backslash$begin\{imagefromfile\} ``file\_name'': ``ZupanFlavourAnomaly.jpg'', ``width'': 690 $\backslash$end\{imagefromfile\} $\backslash$end\{center\} \begin{quote}% graphics grabbed from \hyperlink{Zupan19}{Zupan 19}, see also \hyperlink{LHCb19}{LHCb19, Fig. 5} \end{quote} The [[statistical significances]] of pull away from the [[standard model of particle physics|stanmdard model]] for [[effective field theory|effective]] New Physics models: \begin{quote}% table grabbed from \hyperlink{Alguero19}{Alguero 19} \end{quote} There is the claim (\hyperlink{DGKV19}{DGKV 19}) that the discrepancy with the standard model increases further if non-trivial [[hadron|hadronic]] [[form factors]] are taken into account: \begin{quote}% slide grabbed from \hyperlink{DescotesGenon19b}{Descotes-Genon 19b} \end{quote} If the ongoing evaluation of the data of [[LHC]]`s Run 2 confirms the measurements of Run 1, then the [[statistical significance]] of the effect in each decay channel separately should have reached 5 [[standard deviations|σ]] (\hyperlink{CrivellinEtAl18}{Crivellin et. al 18, p. 12}, \hyperlink{Zupan19}{Zupan 19, 4.6}) and hence conventionally count as detection of flavour anomaly (see \href{statistical+significance#ParticlePhysics}{here}), which would make it the first established ``new physics'' seen at the [[LHC]]. More recent extrapolation based on \hyperlink{LHCbCollaboration18}{LHCb Collaboration 18} predicts a [[statistical significance]] between 6 and 10 $\sigma$ by 2015 \hyperlink{LKLR19}{LKLR 19, p. 12} by they year 2025. $\backslash$linebreak In fact, it had been argued prior to the detection of the anomalies (\hyperlink{Lyons13b}{Lyons 13b}, \hyperlink{Dorigo15}{Dorigo 15}) that due to the specific nature of the [[experiment]], the [[statistical significance]]-threshold for detection of anomalies in [[B meson]]-decays should not be taken to be $5 \sigma$, but just $3 \sigma$, hence well exceeded already by the experimentally seen statistical significance: $\backslash$begin\{center\} $\backslash$begin\{imagefromfile\} ``file\_name'': ``LyonsThresholdForBMesonDecayAnomaly.jpg'', ``width'': 600 $\backslash$end\{imagefromfile\} $\backslash$end\{center\} \begin{quote}% table taken from \hyperlink{Lyons13b}{Lyons 13b, p. 4} \end{quote} $\backslash$begin\{center\} $\backslash$begin\{imagefromfile\} ``file\_name'': ``DorigoThresholdForBMesonDecayAnomaly.jpg'', ``width'': 600 $\backslash$end\{imagefromfile\} $\backslash$end\{center\} \begin{quote}% table taken from \hyperlink{Dorigo15}{Dorigo 15, p. 16} \end{quote} This attitude is reflected in \hyperlink{SGGJC19}{SGGJC 19, p. 2}: \begin{quote}% For some time now, the ratios of semileptonicB-decay rates have appeared to be enhanced with respect to the Standard Model (SM) predictions with a global significance above the evidence threshold. \end{quote} $\backslash$linebreak \hypertarget{Outlook}{}\subsection*{{Status and Outlook}}\label{Outlook} In conclusion, with currently available data, the observed flavour anomalies are possible signs of New Physics beyond the current [[standard model of particle physics]]. $\backslash$begin\{center\} $\backslash$begin\{imagefromfile\} ``file\_name'': ``DordeiConclusion.jpg'', ``width'': 740 $\backslash$end\{imagefromfile\} $\backslash$end\{center\} \begin{quote}% graphics taken from \hyperlink{Dordei18}{Dordei 18, slide 22} \end{quote} In any case, further and more sensitive experiments are needed to confirm and explore the effect, such as possibly the ``\href{http://hilumilhc.web.cern.ch}{HL-LHC}'' or ``HE-LHC'' experiment. General outlook, prospects and suggestions for future collider design in this respect are discussed in detail in \hyperlink{AllanachGripaiosYou17}{Allanach-Gripaios-You 17}, \hyperlink{CrivellinEtAl18}{Crivellin et al. 18}. From \hyperlink{Isodori19}{Isodori 19, slide 6}: $\backslash$begin\{center\} $\backslash$begin\{imagefromfile\} ``file\_name'': ``IsidoriExpectations19.jpg'', ``width'': 610 $\backslash$end\{imagefromfile\} $\backslash$end\{center\} $\backslash$linebreak \hypertarget{possible_models}{}\subsection*{{Possible models}}\label{possible_models} Candidate [[model (in theoretical physics)|models]] of ``New Physics'' beyond the [[standard model of particle physics]] that could possibly explain the flavour anomalies (if indeed they are real) includes the following: \hypertarget{Leptoquarks}{}\subsubsection*{{Leptoquarks and Grand unified theory}}\label{Leptoquarks} One promising [[model (in theoretical physics)|model]] that could potentially explain the apparently observed flavour anomalies are [[leptoquarks]], which naturally arise in, and hence potentially point to, [[grand unified theory]] [[model (in theoretical physics)|models]], such as notably the [[Pati-Salam model]] (\hyperlink{HeekTeresi18}{Heek-Teresi 18}, \hyperlink{HeekTeresi19}{Heek-Teresi 19}) (see \hyperlink{BauerNeubert15}{Bauer-Neubert 15}, \hyperlink{CCDM16}{CCDM 16}, \hyperlink{Crivellin17}{Crivellin 17}, \hyperlink{Falkowski17}{Falkowski17}, \hyperlink{Mueller18}{Mueller 18}, \hyperlink{MatsuzakiNishiwaki18}{Matsuzaki-Nishiwaki 18}, \hyperlink{MonteuxRajaraman18}{Monteux-Rajaraman 18}, \hyperlink{AMST18}{AMST 18}, \hyperlink{BDFKFS18}{BDFKFS 18}, \hyperlink{Crivellin18}{Crivellin 18}, \hyperlink{MMR18}{MMR 18}, \hyperlink{KumarLondon19}{Kumar-London 19, section 2.2.1}, \hyperlink{MVT19}{MVT 19}, \hyperlink{AMM19}{AMM 19}, \hyperlink{MVK19}{MVK 19}, \hyperlink{CataMannel19}{Cata-Mannel 19}) From \hyperlink{Crivellin18}{Crivellin 18, p. 2}: \begin{quote}% the global fit $[$ to [[flavour anomalies]] $]$ even shows compelling evidence for New Physics $[$\ldots{} $]$ The vector [[leptoquark]] (LQ) $SU(2)_L$ singlet with hypercharge $-4/3$ arising in the famous [[Pati-Salam model]] is capable of explaining all the $[$[[flavour anomalies|flavour]] $]$ anomalies and therefore several attempts to construct a [[UV completion]] for this LQ to address the anomalies have been made. It can give a sizeable effect in $b \to c(u)\tau \nu$ data without violating bounds from $b \to s(d)\nu \bar \nu$ and/or direct searches, provides (at [[tree level]]) a $C_9 = - C_{10}$ solution to $b \to s \ell^+ \ell^-$ data and does not lead to [[proton decay]] at any order in [[perturbative quantum field theory|perturbation theory]]. \end{quote} \begin{itemize}% \item [[leptoquarks]] in a [[Randall-Sundrum model]]: \end{itemize} (\hyperlink{BlankeCrivellin18}{Blanke Crivellin 18}, \hyperlink{Crivellin18}{Crivellin 18}) \hypertarget{PossibleModelsOther}{}\subsubsection*{{Other}}\label{PossibleModelsOther} Other possible [[model (in theoretical physics)|models]] besides [[leptoquarks]] (\hyperlink{Leptoquarks}{above}) which have been proposed as possible explanations of the apparently observed flavour anomalies include the following: \begin{itemize}% \item [[Z'-boson]] (\hyperlink{GauldGoertzHaisch13}{Gauld-Goertz-Haisch 13}, \hyperlink{DAmbrosioIverPiccininiPolosa19}{D'Ambrosio-Iver-Piccinini-Polosa 19}) \item [[composite Higgs boson]] (\hyperlink{Marzocca18}{Marzocca 18}) \item [[dark matter]] (\hyperlink{Baek19}{Baek 19}, \hyperlink{CCMRM19}{CCMRM 19}) \item [[right-handed neutrinos]] (\hyperlink{MMR19}{MMR 19}) \end{itemize} \hypertarget{RelationToOtherAnomalies}{}\subsection*{{Relation to other anomalies}}\label{RelationToOtherAnomalies} There is possibly a relation between the [[flavour anomalies]] an the anomaliesagnetic moment\#Anomalies) observed in the [[anomalous magnetic moment]] of the [[electron]] and/or the [[muon]] (e.g. \hyperlink{ChiangOkada17}{Chiang-Okada 17}) Indeed, [[leptoquark]] models preferred by the flavour anomalies are also a candidate explanation of the anomaly seen at over 4$\sigma$ [[statistical significance]] in the [[anomalous magnetic moment]] of the [[muon]], see \href{anomalous+magnetic+moment#Anomalies}{there}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[flavour (particle physics)]] \item [[V\_cb puzzle]] \item [[anomalous magnetic moment]] \end{itemize} \hypertarget{References}{}\subsection*{{References}}\label{References} \hypertarget{general}{}\subsubsection*{{General}}\label{general} Early suggestion to look for relevant channels are due to \begin{itemize}% \item [[Patrick Koppenburg]], \emph{Selection of $B_u \to \ell \ell K$ at LHCb and Sensitivity to $R_K$}, 2007 (\href{cds.cern.ch/record/1027442}{cern:1027442}, \href{cds.cern.ch/record/1027442/files/lhcb-2007-034.pdf}{pdf}) \end{itemize} General introduction to the issue is in \begin{itemize}% \item Rodrigo Alonso, \emph{Lepton (non-) unversality in (flavor changing) neutral current B decays}, Proceedings of \href{https://fpcp2019.triumf.ca/}{FPCP2019} (\href{https://arxiv.org/abs/1907.01716}{arXiv:1907.01716}) \end{itemize} and for [[charm quark]] physics in \begin{itemize}% \item [[Alexey Petrov]], \emph{Theory of rare charm decays into leptons} (\href{https://arxiv.org/abs/1704.03862}{arXiv:1704.03862}) \end{itemize} Comprehensive overview of the latest world-avereaged results to be found at: \begin{itemize}% \item \emph{\href{https://hflav.web.cern.ch/}{Heavy Flavour Averaging group}} (HFLAV) \begin{itemize}% \item \emph{\href{https://hflav.web.cern.ch/content/semileptonic-b-decays}{Semileptonic B-decays}} \item \emph{\href{https://hflav.web.cern.ch/content/rare-b-decays}{Rare B decays}} \item \emph{\href{https://hflav.web.cern.ch/content/b-hadron-decays-open-or-hidden-charm-hadrons}{B decays to charm final states}} \end{itemize} \end{itemize} Measurements include \begin{itemize}% \item [[LHCb collaboration]], \emph{Differential branching fractions and isospin asymmetries of $B \to K^{(\ast)}\mu^+ \mu^-$ decays}, JHEP 06 (2014) 133 (\href{https://arxiv.org/abs/1403.8044}{arXiv:1403.8044}) \item [[LHCb collaboration]], \emph{Test of lepton universality using $B^+\to K^+ \ell^+ \ell^-$ decays}, Phys. Rev. Lett. 113, 151601 (2014) (\href{https://arxiv.org/abs/1406.6482}{arXiv:1406.6482}) \item [[LHCb collaboration]], \emph{Angular analysis and differential branching fraction of the decay $B^0_s \to \phi \mu^+ \mu^-$}, JHEP09(2015)179 (\href{https://arxiv.org/abs/1506.08777}{arXivL1506.08777}) \item [[LHCb collaboration]], \emph{Differential branching fraction and angular analysis of $\Lambda^0_b \to \Lambda \mu^+ \mu^-$ decays}, JHEP 06 (2015) 115; JHEP 09 (2018) 145 (\href{https://arxiv.org/abs/1503.07138}{arXiv:1503.07138}) \item [[LHCb collaboration]], \emph{Test of lepton universality using $B^0\to K^{\ast 0} \ell^+ \ell^-$ decays}, JHEP 08 (2017) 055 (\href{https://arxiv.org/abs/1705.05802}{arXiv:1705.05802}) \item [[LHCb collaboration]], \emph{Measurement of the ratio of the $B^0 \to D^{\ast -} \tau^+ \vu_\tau$ and $B^0 \to D^{\ast - \mu^+ \nu_\mu}$ branching fractions using three-prong τ-lepton decays} (\href{https://arxiv.org/abs/1708.08856}{arXiv:1708.08856}) \item [[Belle collaboration]], \emph{Measurement of the $\tau$ lepton polarization and $R(D^\ast)$ in the decay $\bar B \to D^\ast \tau^- \bar \nu_\tau$ with one-prong hadronic τ decays at Belle} (\href{https://arxiv.org/abs/1709.00129}{arXiv:1709.00129}) \item [[Belle collaboration]], \emph{Measurement of the $D^{\ast -}$ polarization in the decay $B^0 \to D^{\ast -} \tau^+ \nu_\tau$} (\href{https://arxiv.org/abs/1903.03102}{arXiv:1903.03102}) \item [[LHCb collaboration]], \emph{Search for lepton-universality violation in $B^+ \to K^+ \ell^+ \ell^-$ decays} (\href{https://cds.cern.ch/record/2668514}{cern:2668514}) \item [[Belle Collaboration]], \emph{Test of lepton flavor universality in $B \to K^\ast \ell^+ \ell^-$ decays at Belle} (\href{https://arxiv.org/abs/1904.02440}{arXiv:1904.02440}) \item [[LHCb collaboration]], \emph{Lepton flavour universality in charged-current $B$ decays} (\href{https://arxiv.org/abs/1907.01500}{arXiv:1907.01500}) \end{itemize} Review includes \begin{itemize}% \item Elena Graverini, \emph{Flavour anomalies: a review}, in \emph{Proceedings of the \href{http://inspirehep.net/record/1621649}{13th International Conference on Beauty, Charm and Hyperon hadrons (BEACH 2018)}} (\href{https://arxiv.org/abs/1807.11373}{arXiv:1807.11373}) \item Diego Guadagnoli, \emph{Flavour anomalies on the eve of the Run-2 verdict}, Modern Physics Letters AVol. 32, No. 07, 1730006 (2017) (\href{https://arxiv.org/abs/1703.02804}{arXiv:1703.02804}) \item \href{https://cerncourier.com/}{CernCourier}, \emph{\href{https://cerncourier.com/beauty-quarks-test-lepton-universality/}{Beauty quarks test lepton universality}}, March 2018 \item Paula Alvarez Cartelle on behalf of the [[LHCb collaboration]], \emph{New results on flavor anomalies at LHCb}, April 2018 (\href{https://cds.cern.ch/record/2311960/files/FlavourAnomaliesLHCbAlvarez.pdf}{pdf}) \item Biplab Dey on behalf of the [[LHCb collaboration]], \emph{Flavor anomalies at LHCb}, May 2018 (pdf4.05.pdf)) \item Vera Lüth, \emph{A Challenge to Lepton Universality in B Meson Decays}, Invited tall at \href{https://indico.cern.ch/event/651952/}{7th Symposium on Symmetries in Subatomic Physics (SSP 2018)} at RWTH Aachen University (Germany), June 11-15, 2018 (\href{https://arxiv.org/abs/1808.02587}{arXiv:1808.02587}) \item Francesca Dordei, \emph{Lepton flavour universality at LHCb}, August 2018 (\href{http://cdsweb.cern.ch/record/2634813}{cern:2634813}, \href{http://cdsweb.cern.ch/record/2634813/files/dordei_nufact.pdf}{pdf}) \item Karol Adamczyk ([[Belle collaboration]]), \emph{Semitauonic B decays at Belle/Belle II}, Proceedings of the \href{https://ckm2018.physi.uni-heidelberg.de/}{10th International Workshop on the CKM Unitarity Triangle} (CKM 2018), Heidelberg, Germany, September 17-21, 2018 (\href{https://arxiv.org/abs/1901.06380}{arXiv:1901.06380}) \item Christopher Bouchard, Lu Cao, Patrick Owen, \emph{Summary of the 2018 CKM working group on semileptonic and leptonic b-hadron decays} (\href{https://arxiv.org/abs/1902.09412}{arXiv:1902.09412}) \item Jure Zupan, \emph{Introduction to flavour physics} (\href{https://arxiv.org/abs/1903.05062}{arXiv:1903.05062}) \item David Straub on behalf of [[LHCb collaboration]], \emph{Search for lepton-universality violation in $B^+ \to K^+ \ell^+ \ell^-$ decays}, talk at \href{http://moriond.in2p3.fr/2019/EW/}{Moriond 2019} (\href{http://moriond.in2p3.fr/2019/EW/slides/6_Friday/2_afternoon/4_straub-moriond-2019.pdf}{pdf}) \item [[Ben Allanach]], \emph{Finding Z's responsible for $R_{K^{(\ast)}}$}, talk at \href{http://moriond.in2p3.fr/2019/EW/}{Moriond 2019} (\href{http://moriond.in2p3.fr/2019/EW/slides/6_Friday/2_afternoon/5_Allanach.pdf}{pdf}) \item Sebastien Descotes-Genon, \emph{B-physics anomalies, fluctuations and patterns:a status report}, talk at \href{https://indico.cern.ch/event/757995/}{ALPS2019} (\href{https://indico.cern.ch/event/757995/contributions/3315334/}{web}, \href{https://indico.cern.ch/event/757995/contributions/3315334/attachments/1832940/3002267/slides_alps.pdf}{pdf}) \item Debjyoti Bardhan, Diptimoy Ghosh, \emph{B-meson charged current anomalies: the post-Moriond status} (\href{https://arxiv.org/abs/1904.10432}{arXiv:1904.10432}) \item Marcel Alguero, \emph{Emerging patterns of New Physics with and without Lepton Flavour Universal contributions}, talk at \href{https://indico.in2p3.fr/event/18646/}{bsll2019} (\href{https://indico.in2p3.fr/event/18646/contributions/74403/attachments/54790/71933/Marcel_Alguero_Lyon.pdf}{pdf}, [[AlgueroBsll19.pdf:file]]) \item Jon Butterworth, Section 1 in: \emph{Highlights of EPS HEP 2019}, talk at \href{http://eps-hep2019.eu/}{eps-hep2019} (\href{https://arxiv.org/abs/1910.12768}{arxiv:1910.12768}) \end{itemize} Outlook: \begin{itemize}% \item [[Ben Allanach]], Ben Gripaios, Tevong You, \emph{The Case for Future Hadron Colliders From $B \to K^{(\ast)}\mu^+ \mu^-$ Decays}, JHEP03(2018)021 (\href{https://arxiv.org/abs/1710.06363}{arXiv:1710.06363}) \item [[LHCb collaboration]], \emph{Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era} (\href{https://arxiv.org/abs/1808.08865}{arXiv:1808.08865}) \item A. Cerri, [[Andreas Crivellin]] et. al. \emph{Opportunities in Flavour Physics at the HL-LHC and HE-LHC}, Report from Working Group 4 on the \href{https://indico.cern.ch/event/686494/}{Physics of the HL-LHC, and Perspectives at the HE-LHC} (\href{https://arxiv.org/abs/1812.07638}{arXiv:1812.07638}) \item Gino Isodori, \emph{Flavor physics \& CP violation}, talk at \href{https://indico.cern.ch/event/808335/timetable/#20190513.detailed}{Symposium on the European Strategy for Particle Physics} 2019 (\href{https://indico.cern.ch/event/808335/contributions/3365125/attachments/1842875/3022853/Granada_GI_13May.pdf}{pdf}) \item Luca Di Luzio, Matthew Kirk, Alexander Lenz, Thomas Rauh, \emph{$\Delta M_s$ theory precision confronts flavour anomalies} (\href{https://arxiv.org/abs/1909.11087}{arXiv:1909.11087}) \item [[Benjamin Grinstein]], \emph{A path to flavor}, talk at \emph{\href{https://indico.cern.ch/event/769902/}{Implications of LHCb measurement and future prospects}} CERN 2019 (\href{https://indico.cern.ch/event/769902/contributions/3582540/attachments/1926501/3193107/Grinstein-high-res.pdf}{pdf}, [[GrinsteinFlavor2019.pdf:file]], \href{https://indico.cern.ch/event/769902/contributions/3582540}{indico:3582540}) \item Monika Blanke, \emph{Flavour Physics from Present to Future Colliders} (\href{https://arxiv.org/abs/1910.10662}{arxiv:1910.10662}) \end{itemize} Emphasis of [[non-perturbative effects]]: \begin{itemize}% \item Ulrich Nierste, \emph{Flavour Anomalies: Phenomenology and BSM Interpretations}, talk at \href{https://indico.desy.de/indico/event/18498/}{Planck 2018}, Bonn 2018 (\href{https://indico.desy.de/indico/event/18498/session/5/contribution/52/material/slides/0.pdf}{pdf}) \item Saeed Kamali, \emph{New physics in inclusive semileptonic $B$ decays including nonperturbative corrections} (\href{https://arxiv.org/abs/1811.07393}{arXiv:1811.07393}) \end{itemize} Emphasis of higher [[loop order]]-effects: \begin{itemize}% \item [[Andreas Crivellin]], Christoph Greub, Dario Müller, Francesco Saturnino, \emph{Importance of Loop Effects in Explaining the Accumulated Evidence for New Physics in B Decays with a Vector Leptoquark}, Phys. Rev. Lett. 122, 011805 (2019) (\href{https://arxiv.org/abs/1807.02068}{arXiv:1807.02068}) \end{itemize} Emphasis of effects of [[hadron|hadronic]] [[form factors]]: \begin{itemize}% \item Sébastien Descotes-Genon, Alexander Khodjamirian, Javier Virto, \emph{Light-Cone Sum Rules for $B \to K \pi$ Form Factors and Applications to Rare Decays} (\href{https://arxiv.org/abs/1908.02267}{arXiv:1908.02267}) \item Sebastien Descotes-Genon, \emph{Light-cone sum rules for $B \to K \pi$ form factorsand applications to rare decays}, talk at \href{https://indico.in2p3.fr/event/18646/}{bsll2019} (\href{https://indico.in2p3.fr/event/18646/contributions/74316/attachments/54770/71918/slides_bslllyon.pdf}{pdf}, [[DescotesGenonBssl19.pdf:file]]) \end{itemize} See also \begin{itemize}% \item CERN, \emph{\href{https://home.cern/scientists/updates/2017/06/lhcb-flavour-anomalies-continue-intrigue}{LHCb flavour anomalies continue to intrigue}}, June 2017 \item Vasudevan Mukunth, \emph{\href{https://thewire.in/science/b-mesons-kaons-flavour-changing-neutral-currents}{A Similar Anomaly Has Showed up in Three Physics Experiments Since 2009. What’s Happening?}}, 2017 \item Diego Guadagnoli, \emph{On the status of flavor anomalies}, 2016 (\href{http://indico.ictp.it/event/7627/session/78/contribution/486/}{web}) \end{itemize} Original articles include: \begin{itemize}% \item Guido D'Amico, Marco Nardecchia, Paolo Panci, Francesco Sannino, [[Alessandro Strumia]], Riccardo Torre, Alfredo Urbano, \emph{Flavour anomalies after the $R_{K^\ast}$ measurement}, J. High Energ. Phys. (2017) 2017 (\href{https://arxiv.org/abs/1704.05438}{arXiv:1704.05438}) \item Andrea Mauri, Nicola Serra, Rafael Silva Coutinho, \emph{Towards establishing Lepton Flavour Universality violation in $\bar B \to \bar K^\ast \ell^+ \ell^-$ decays} (\href{https://arxiv.org/abs/1805.06401}{arXiv:1805.06401}) \item Bernat Capdevila, [[Andreas Crivellin]], Sébastien Descotes-Genon, Joaquim Matias, Javier Virto, \emph{Patterns of New Physics in $b \to s \ell^+ \ell^-$ transitions in the light of recent data}, JHEP 1801 (2018) 093 (\href{https://arxiv.org/abs/1704.05340}{arXiv:1704.05340}) \item Alejandro Celis, Javier Fuentes-Martin, Avelino Vicente, Javier Virto, \emph{Gauge-invariant implications of the LHCb measurements on Lepton-Flavour Non-Universality}, Phys. Rev. D 96, 035026 (2017) (\href{https://arxiv.org/abs/1704.05672}{arXiv:1704.05672}) \item Monika Blanke, [[Andreas Crivellin]], Stefan de Boer, Teppei Kitahara, Marta Moscati, Ulrich Nierste, Ivan Nišandžić, \emph{Impact of polarization observables and $B_c \to \tau \nu$ on new physics explanations of the $b \to c \tau \nu$ anomaly} (\href{https://arxiv.org/abs/1811.09603}{arXiv:1811.09603}) \item Monika Blanke, [[Andreas Crivellin]], Stefan de Boer, Teppei Kitahara, Marta Moscati, Ulrich Nierste, Ivan Nišandžić, \emph{Addendum: ``Impact of polarization observables and $B_c \to \tau \nu$ on new physics explanations of the $b \to c \tau \nu$ anomaly''} (\href{https://arxiv.org/abs/1905.08253}{arXiv:1905.08253}) \item Jacky Kumar, David London, \emph{New physics in $b \to s e^+ e^-$?}, Phys. Rev. D 99, 073008 (2019) (\href{https://arxiv.org/abs/1901.04516}{arXiv:1901.04516}, \href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.073008}{doi:10.1103/PhysRevD.99.073008}) \item Domagoj Leljak, Blazenka Melic, Monalisa Patra, \emph{On lepton flavour universality in semileptonic $B_c \to \eta_c, J/\psi$ decays} (\href{https://arxiv.org/abs/1901.08368}{arXiv:1901.08368}) \item Rui-Xiang Shi, Li-Sheng Geng, Benjamín Grinstein, Sebastian Jäger, Jorge Martin Camalich, \emph{Revisiting the new-physics interpretation of the $b \to c \tau \nu$ data} (\href{https://arxiv.org/abs/1905.08498}{arXiv:1905.08498}) \end{itemize} Cautionary remarks include \begin{itemize}% \item \emph{\href{http://dispatchesfromturtleisland.blogspot.com/2017/05/some-b-meson-decay-anomalies-disappear.html}{Some B Meson Decay Anomalies Disappear In Run-2 Data}} \item Giacomo Caria on behalf of the [[Belle collaboration]], \emph{Measurement of $R(D)$ and $R(D^\ast)$ with a semileptonic tag at Belle}, Moriond, EW 22/03/2019 (\href{http://moriond.in2p3.fr/2019/EW/slides/6_Friday/3_YSF/1_gcaria_moriond2019.pdf}{pdf}) \end{itemize} In contrast, an argument that the threshold [[statistical significance]] for flavour anomalies should be taken to be $3\sigma$ instead of $5 \sigma$ is made in \begin{itemize}% \item Louis Lyons, \emph{Discovering the Significance of 5 sigma} (\href{https://arxiv.org/abs/1310.1284}{arXiv:1310.1284}) \item [[Tommaso Dorigo]], \emph{Extraordinary claims: the $0.000029\%$ solution}, EPJ Web of Conferences 95, 02003 (2015) (\href{https://doi.org/10.1051/epjconf/20159502003}{doi:10.1051/epjconf/20159502003}) \end{itemize} \hypertarget{possible_explanationsmodels}{}\subsubsection*{{Possible explanations/models}}\label{possible_explanationsmodels} \hypertarget{general_eft_parameterization}{}\paragraph*{{General EFT parameterization}}\label{general_eft_parameterization} \begin{itemize}% \item T. Hurth, A. Arbey, F. Mahmoudi, S. Neshatpour, \emph{New global fits to $b \to s$ data with all relevant parameters}, Proceedings of the \href{https://agenda.infn.it/event/14359/}{Seventh Workshop on Theory, Phenomenology and Experiments in Flavour Physics}, Capri, 8-10 June 2018 (\href{https://arxiv.org/abs/1812.07602}{arXiv:1812.07602}) \item Srimoy Bhattacharya, Aritra Biswas, Zaineb Calcuttawala, Sunando Kumar Patra, \emph{An in-depth analysis of $b \to c(s)$ semileptonic observables with possible $\mu \to \tau$ mixing} (\href{https://arxiv.org/abs/1902.02796}{arXiv:1902.02796}) \item Marcel Algueró, Bernat Capdevila, Sébastien Descotes-Genon, Pere Masjuan, Joaquim Matias, \emph{What $R_K$ and $Q_5$ can tell us about New Physics in $b \to s \ell \ell$ transitions?} (\href{https://arxiv.org/abs/1902.04900}{arXiv:1902.04900}) \item Marcel Algueró, Bernat Capdevila, [[Andreas Crivellin]], Sébastien Descotes-Genon, Pere Masjuan, Joaquim Matias, Javier Virto, \emph{Addendum: ``Patterns of New Physics in $b \to s \ell^+ \ell^-$ transitions in the light of recent data''} (\href{https://arxiv.org/abs/1903.09578}{arXiv:1903.09578}) \item Ashutosh Kumar Alok, Amol Dighe, Shireen Gangal, Dinesh Kumar, \emph{Continuing search for new physics in $b \to \mu s s$ decays: two operators at a time} (\href{https://arxiv.org/abs/1903.09617}{arXiv:1903.09617}) \item Marco Ciuchini, António M. Coutinho, Marco Fedele, Enrico Franco, Ayan Paul, Luca Silvestrini, Mauro Valli, \emph{New Physics in $b \to s \ell^+ \ell^-$ confronts new data on Lepton Universality} (\href{https://arxiv.org/abs/1903.09632}{arXiv:1903.09632}) \item Jason Aebischer, Wolfgang Altmannshofer, Diego Guadagnoli, Meril Reboud, Peter Stangl, David M. Straub, \emph{B-decay discrepancies after Moriond 2019} (\href{https://arxiv.org/abs/1903.10434}{arXiv:1903.10434}) \item Alakabha Datta, Jacky Kumar, David London, \emph{The $B$ Anomalies and New Physics in $b \to s e^+ e^-$} (\href{https://arxiv.org/abs/1903.10086}{arXiv:1903.10086}) \item Ashutosh Kumar Alok, Dinesh Kumar, Suman Kumbhakar, S Uma Sankar, \emph{Impact of $D^\ast$ polarization measurement on solutions to $R_D$-$R_{D^\ast}$ anomalies} (\href{https://arxiv.org/abs/1903.10486}{arXiv:1903.10486}) \item Pere Arnan, [[Andreas Crivellin]], Marco Fedele, Federico Mescia, \emph{Generic Loop Effects of New Scalars and Fermions in $b \to s \ell^+ \ell^-$ and a Vector-like 4th Generation} (\href{https://arxiv.org/abs/1904.05890}{arXiv:1904.05890}) \item A. Arbey, T. Hurth, F. Mahmoudi, D. Martinez Santos, S. Neshatpour, \emph{Update on the $b \to s$ anomalies} (\href{https://arxiv.org/abs/1904.08399}{arXiv:1904.08399}) \item Pouya Asadi, David Shih, \emph{Maximizing the Impact of New Physics in $b \to c \tau \nu$ Anomalies}, (\href{https://arxiv.org/abs/1905.03311}{arXiv:1905.03311}) \item J. E. Chavez-Saab, Marxil Sánchez, Genaro Toledo, \emph{$R_{D^\ast}$ or $R_{D_\pi}$: closing the theoretical gap?} (\href{https://arxiv.org/abs/1905.03394}{arXiv:1905.03394}) \item Suman Kumbhakar, Ashutosh Kumar Alok, Dinesh Kumar, S Uma Sankar, \emph{Resolving $R_D$ and $R_{D^\ast}$ anomalies} (\href{https://arxiv.org/abs/1905.03513}{arXiv:1905.03513}) \item Jyoti Saini, Dinesh Kumar, Shireen Gangal, S. B. Dasm, \emph{Probing signatures of beyond standard model physics through $B_s^\ast \to \mu^+ \mu^-$ decay} (\href{https://arxiv.org/abs/1905.03933}{arXiv:1905.03933}) \item David London, \emph{CP Violation in $\bar B^0 \to D^{\ast +} \ell^- \bar \nu_\ell$} (\href{https://arxiv.org/abs/1906.07752}{arXiv:1906.07752}) \item Marta Moscati, \emph{New Physics in $b \to c \tau \nu$: Impact of Polarisation Observables and $B_c \to \tau \nu$} (\href{https://arxiv.org/abs/1906.08035}{arXiv:1906.08035}) \item Damir Becirevic, Marco Fedele, Ivan Nisandzic, Andrey Tayduganov, \emph{Lepton Flavor Universality tests through angular observables of $\bar B \to D^{(\ast) \ell \bar \nu}$ decay modes} (\href{https://arxiv.org/abs/1907.02257}{arXiv:1907.02257}) \end{itemize} \hypertarget{leptoquarks}{}\paragraph*{{Leptoquarks}}\label{leptoquarks} explanation via assumption of [[leptoquarks]]: \begin{itemize}% \item Martin Bauer, Matthias Neubert, \emph{One Leptoquark to Rule Them All: A Minimal Explanation for $R_{D^{(\ast)}}$, $R_K$ and $(g-2)_\mu$}, Phys. Rev. Lett. 116, 141802 (2016) (\href{https://arxiv.org/abs/1511.01900}{arXiv:1511.01900}) \item Yi Cai, John Gargalionis, Michael A. Schmidt, Raymond R. Volkas, \emph{Reconsidering the One Leptoquark solution: flavor anomalies and neutrino mass} (\href{https://arxiv.org/abs/1704.05849}{arXiv:1704.05849}) \item Estefania Coluccio Leskow, [[Andreas Crivellin]], Giancarlo D'Ambrosio, Dario Müller, \emph{$(g-2)_\mu$, Lepton Flavour Violation and Z Decays with Leptoquarks: Correlations and Future Prospects}, Phys. Rev. D 95, 055018 (2017) (\href{https://arxiv.org/abs/1612.06858}{arXiv:1612.06858}) \item [[Andreas Crivellin]], \emph{New Physics in Flavour Observables} (\href{https://arxiv.org/abs/1706.00929}{arXiv:1706.00929}) \item [[Adam Falkowski]], \emph{\href{http://resonaances.blogspot.com/2015/11/leptoquarks-strike-back.html}{Leptoquarks strike back}}, November 2017 \item Dario Müller, \emph{Leptoquarks in Flavour Physics}, EPJ Web of Conferences 179, 01015 (2018) (\href{https://arxiv.org/abs/1801.03380}{arXiv:1801.03380}) \item Shinya Matsuzaki, Kenji Nishiwaki, Kei Yamamoto, \emph{Simultaneous interpretation of K and B anomalies in terms of chiral-flavorful vectors} (\href{https://arxiv.org/abs/1806.02312}{arXiv:1806.02312}) \item Angelo Monteux, [[Arvind Rajaraman]], \emph{B Anomalies and Leptoquarks at the LHC: Beyond the Lepton-Quark Final State}, Phys. Rev. D 98, 115032 (2018) (\href{https://arxiv.org/abs/1803.05962}{arXiv:1803.05962}) \item Ufuk Aydemir, Djordje Minic, Chen Sun, Tatsu Takeuchi, \emph{$B$-decay anomalies and scalar leptoquarks in unified Pati-Salam models from noncommutative geometry}, JHEP 09 (2018) 117 (\href{https://arxiv.org/abs/1804.05844}{arXiv:1804.05844}) \item Damir Bečirević, Ilja Doršner, Svjetlana Fajfer, Nejc Košnik, Darius A. Faroughy, Olcyr Sumensari, \emph{Scalar leptoquarks from GUT to accommodate the $B$-physics anomalies}, Phys. Rev. D 98, 055003 (2018) (\href{https://arxiv.org/abs/1806.05689}{arXiv:1806.05689}) \item Jacky Kumar, David London, Ryoutaro Watanabe, \emph{Combined Explanations of the $b \to s \mu^+ \mu^-$ and $b \to c \tau^- \bar \nu$ Anomalies: a General Model Analysis}, Phys. Rev. D 99, 015007 (2019) (\href{https://arxiv.org/abs/1806.07403}{arXiv:1806.07403}) (reviewed in \hyperlink{Kumar19}{Kumar 19}) \item Tanumoy Mandal, Subhadip Mitra, Swapnil Raz, \emph{$R_{D^{(\ast)}}$ in minimal leptoquark scenarios: impact of interference on the exclusion limits from LHC data} (\href{https://arxiv.org/abs/1811.03561}{arXiv:1811.03561}) \item Jason Aebischer, [[Andreas Crivellin]], Christoph Greub, \emph{QCD Improved Matching for Semi-Leptonic B Decays with Leptoquarks} (\href{https://arxiv.org/abs/1811.08907}{arXiv:1811.08907}) \item Michael J. Baker, Javier Fuentes-Martin, Gino Isidori, Matthias König, \emph{High-pT Signatures in Vector-Leptoquark Models} (\href{https://arxiv.org/abs/1901.10480}{arXiv:1901.10480}) \item Ivo de Medeiros Varzielas, Jim Talbert, \emph{Simplified Models of Flavourful Leptoquarks} (\href{https://arxiv.org/abs/1901.10484}{arXiv:1901.10484}) \item Natascia Vignaroli, \emph{Seeking leptoquarks in the $t \bar t$ plus missing energy channel at the high-luminosity LHC} (\href{https://arxiv.org/abs/1808.10309}{arXiv:1808.10309}) \item Ufuk Aydemir, Tanumoy Mandal, Subhadip Mitra, \emph{A single TeV-scale scalar leptoquark in SO(10) grand unification and B-decay anomalies} (\href{https://arxiv.org/abs/1902.08108}{arXiv:1902.08108}) \item Ivo de Medeiros Varzielas, Stephen F. King, \emph{Origin of Yukawa couplings for Higgs and leptoquarks} (\href{https://arxiv.org/abs/1902.09266}{arXiv:1902.09266}) \item Oscar Cata, Thomas Mannel, \emph{Linking lepton number violation with $B$ anomalies} (\href{https://arxiv.org/abs/1903.01799}{arXiv:1903.01799}) \item Bhubanjyoti Bhattacharya, Alakabha Datta, Saeed Kamali, David London, \emph{CP Violation in $\bar B^0 \to D^{\ast +} \mu^- \bar \nu_\mu$} (\href{https://arxiv.org/abs/1903.02567}{arXiv:1903.02567}) \item Han Yan, Ya-Dong Yang, Xing-Bo Yuan, \emph{Phenomenology of $b \to c \tau \bar \nu$ decays in a scalar leptoquark model} (\href{https://arxiv.org/abs/1905.01795}{arXiv:1905.01795}) \item Alakabha Datta, Divya Sachdeva, John Waite, \emph{A unified explanation of $b \to s\mu^= \mu^-$ anomalies, neutrino masses and $B \to \pi K$ puzzle} (\href{https://arxiv.org/abs/1905.04046}{arXiv:1905.04046}) \item Andrei Angelescu, \emph{Single Leptoquark Solutions to the $B$-physics Anomalies}, contribution to the \href{http://moriond.in2p3.fr/2019/EW/}{2019 EW session} of the \href{http://moriond.in2p3.fr/2019/}{54th Rencontres de Moriond} (\href{https://arxiv.org/abs/1905.06044}{arXiv:1905.06044}) \item Oleg Popov, Michael A. Schmidt, Graham White, \emph{$R_2$ as a single leptoquark solution to $R_{D^{(\ast)}}$ and $R_{K^{(\ast)}}$} (\href{https://arxiv.org/abs/1905.06339}{arXiv:1905.06339}) \item [[Andreas Crivellin]], Francesco Saturnino, \emph{Explaining the Flavor Anomalies with a Vector Leptoquark (Moriond 2019 update)} (\href{https://arxiv.org/abs/1906.01222}{arXiv:1906.01222}) \item [[Michal Malinský]], \emph{Lepton non-universality in $B$-decays in the minimal leptoquark gauge model} (\href{https://arxiv.org/abs/1906.09174}{arXiv:1906.09174}) \item Jordan Bernigaud, Ivo de Medeiros Varzielas, Jim Talbert, \emph{Finite Family Groups for Fermionic and Leptoquark Mixing Patterns} (\href{https://arxiv.org/abs/1906.11270}{arXiv:1906.11270}) \item Junichiro Kawamura, Stuart Raby, Andreas Trautner, \emph{Complete Vector-like Fourth Family and new $U(1)'$ for Muon Anomalies} (\href{https://arxiv.org/abs/1906.11297}{arXiv:1906.11297}) \item Leandro Da Rold, Federico Lamagna, \emph{A vector leptoquark for the B-physics anomalies from a composite GUT} (\href{https://arxiv.org/abs/1906.11666}{arXiv:1906.11666}) \item Jacky Kumar, \emph{Combined explanation of the B-anomalies}, Proceedings for FPCP 2019 (\href{https://arxiv.org/abs/1907.00416}{arXiv:1907.00416}) (review of \hyperlink{KumarLondonWatanabe18}{KumarLondonWatanabe18}) \item C. Hati, J. Kriewald, J. Orloff, A.M. Teixeira, \emph{A nonunitary interpretation for a single vector leptoquark combined explanation to the B-decay anomalies} (\href{https://arxiv.org/abs/1907.05511}{arXiv:1907.05511}) \item Javier Fuentes-Martin, Gino Isidori, Matthias König, Nudzeim Selimovic, \emph{Vector Leptoquarks Beyond Tree Level} (\href{https://arxiv.org/abs/1910.13474}{arxiv:1910.13474}) \end{itemize} [[leptoquarks]] within a [[Randall-Sundrum model]]: \begin{itemize}% \item [[Andreas Crivellin]], \emph{Explaining the Flavour Anomalies with the Pati-Salam Vector Leptoquark}, PoS LHCP2018 (2018) 269 (\href{http://inspirehep.net/record/1713260}{spire:1713260}, \href{https://doi.org/10.22323/1.321.0269}{doi:10.22323/1.321.0269}) \item Monika Blanke, [[Andreas Crivellin]], \emph{$B$ Meson Anomalies in a Pati-Salam Model within the Randall-Sundrum Background}, Phys. Rev. Lett. 121, 011801 (2018) (\href{https://arxiv.org/abs/1801.07256}{arXiv:1801.07256}) \item [[Andreas Crivellin]], Francesco Saturnino, \emph{Correlating Tauonic B Decays to the Neutron EDM via a Scalar Leptoquark} (\href{https://arxiv.org/abs/1905.08257}{arXiv:1905.08257}) \item Innes Bigaran, John Gargalionis, Raymond R. Volkas, \emph{A near-minimal leptoquark model for reconciling flavour anomalies and generating radiative neutrino masses} (\href{https://arxiv.org/abs/1906.01870}{arXiv:1906.01870}) \end{itemize} [[leptoquarks]] particularly as fields in a [[grand unified theory]]: \begin{itemize}% \item Julian Heeck, Daniele Teresi, \emph{Pati-Salam explanations of the B-meson anomalies}, JHEP 12 (2018) 103 (\href{https://arxiv.org/abs/1808.07492}{arXiv:1808.07492}) \item Julian Heeck, Daniele Teresi, \emph{Pati-Salam and lepton universality in B decays} (\href{https://arxiv.org/abs/1905.05211}{arXiv:1905.05211}) \end{itemize} and in relation to [[axions]]: \begin{itemize}% \item Javier Fuentes-Martin, Mario Reig, Avelino Vicente, \emph{4321\ldots{} axion!} (\href{https://arxiv.org/abs/1907.02550}{arXiv:1907.02550}) \end{itemize} [[leptoquarks]] as possible explanation also of the anomalies seen in the [[ANITA experiment]] \begin{itemize}% \item Bhavesh Chauhan, Subhendra Mohanty, \emph{A common leptoquark solution of flavor and ANITA anomalies} (\href{https://arxiv.org/abs/1812.00919}{arXiv:1812.00919}) \end{itemize} \hypertarget{boson}{}\paragraph*{{$Z'$-boson}}\label{boson} explanations via assumption of [[Z'-bosons]]: \begin{itemize}% \item Rhorry Gauld, Florian Goertz, Ulrich Haisch, \emph{An explicit Z'-boson explanation of the $B \to K^\ast \mu^+ \mu^-$ anomaly}, JHEP01(2014)069 (\href{https://arxiv.org/abs/1310.1082}{arXiv:1310.1082}) \item G. D'Ambrosio, A. M. Iyer, F. Piccinini, A.D. Polosa, \emph{Confronting $B$ anomalies with atomic physics} (\href{https://arxiv.org/abs/1902.00893}{arXiv:1902.00893}) \item P. Ko, Takaaki Nomura, Chaehyun Yu, \emph{$b \to s \mu^+ \mu^-$ anomalies and related phenomenology in $U(1)_{B_{3-x_\mu L_\mu - x_\tau L_\tau}}$ flavor gauge models} (\href{https://arxiv.org/abs/1902.06107}{arXiv:1902.06107}) \item Joe Davighi, \emph{Connecting neutral current $B$ anomalies with the heaviness of the third family}, Contribution to the \href{http://moriond.in2p3.fr/2019/QCD/}{2019 QCD session} of the \href{http://moriond.in2p3.fr/2019/}{54th Rencontres de Moriond} (\href{https://arxiv.org/abs/1905.06073}{arXiv:1905.06073}) \item Wolfgang Altmannshofer, Joe Davighi, Marco Nardecchia, \emph{Gauging the accidental symmetries of the Standard Model, and implications for the flavour anomalies} (\href{https://arxiv.org/abs/1909.02021}{arXiv:1909.02021}) \end{itemize} \hypertarget{other_2}{}\paragraph*{{Other}}\label{other_2} [[composite Higgs boson]]: \begin{itemize}% \item David Marzocca, \emph{Addressing the B-physics anomalies in a fundamental Composite Higgs Model}, JHEP07(2018)121 (\href{https://arxiv.org/abs/1803.10972}{arXiv:1803.10972}) \item [[Andreas Crivellin]], Dario Müller, Christoph Wiegand, \emph{$b \to s \ell^+ \ell^-$ Transitions in Two-Higgs-Doublet Models} (\href{https://arxiv.org/abs/1903.10440}{arXiv:1903.10440}) \item Peter Stangl, \emph{Flavour anomalies and (fundamental) partial compositeness} (\href{https://arxiv.org/abs/1907.05158}{arXiv:1907.05158}) \end{itemize} [[dark matter]]: \begin{itemize}% \item Seungwon Baek, \emph{Scalar dark matter behind $b \to s \mu \mu$ anomaly} (\href{https://arxiv.org/abs/1901.04761}{arXiv:1901.04761}) \item D.G. Cerdeno, A. Cheek, P. Martin-Ramiro, J.M. Moreno, \emph{B anomalies and dark matter: a complex connection} (\href{https://arxiv.org/abs/1902.01789}{arXiv:1902.01789}) \item Anirban Biswas, Avirup Shaw, \emph{Reconciling dark matter, $R_{K^{(\ast)}}$ anomalies and $(g-2)_\mu$ in an $L_\mu-L_\tau$ scenario} (\href{https://arxiv.org/abs/1903.08745}{arXiv:1903.08745}) \end{itemize} [[right-handed neutrino]]: \begin{itemize}% \item Carlo Marzo, Luca Marzola, Martti Raidal, \emph{Common explanation to the $R_{K^{(\ast)}}$, $R_{K^{(\ast)}}$ and $\epsilon'/\epsilon$ anomalies in a 3HDM+$\nu_R$ and connections to neutrino physics} (\href{https://arxiv.org/abs/1901.08290}{arXiv:1901.08290}) \item Luigi Delle Rose, Shaaban Khalil, Simon J.D. King, Stefano Moretti, \emph{$R_K$ and $R_{K^\ast}$ in an Aligned 2HDM with Right-Handed Neutrinos} (\href{https://arxiv.org/abs/1903.11146}{arXiv:1903.11146}) \end{itemize} [[MSSM]] with [[R-parity]]-violation \begin{itemize}% \item Dong-Yang Wang, Ya-Dong Yang, Xing-Bo Yuan, \emph{$b \to c \tau \bar \nu$ decays in supersymmetry with R-parity violation} (\href{https://arxiv.org/abs/1905.08784}{arXiv:1905.08784}) \end{itemize} [[Horava-Witten theory]]-type [[KK-compactification]]: \begin{itemize}% \item Jong-Phil Lee, \emph{$B$ anomalies in the nonminimal universal extra dimension model} (\href{https://arxiv.org/abs/1906.07345}{arXiv:1906.07345}) \end{itemize} Joint explanation with the \href{anomalous+magnetic+moment#Anomalies}{anomalies} observed in the [[muon]] [[anomalous magnetic moment]]: \begin{itemize}% \item Cheng-Wei Chiang, Hiroshi Okada, \emph{A simple model for explaining muon-related anomalies and dark matter} (\href{https://arxiv.org/abs/1711.07365}{arXiv:1711.07365}) \item Junichiro Kawamura, Stuart Raby, Andreas Trautner, \emph{Complete Vector-like Fourth Family and new $U(1)'$ for Muon Anomalies} (\href{https://arxiv.org/abs/1906.11297}{arXiv:1906.11297}) \end{itemize} Exotic [[Higgs field]] couplings to a [[hidden sector]]: \begin{itemize}% \item Jared A. Evans, [[Philip Tanedo]], Mohammadreza Zakeri, \emph{Exotic Lepton-Flavor Violating Higgs Decays} (\href{https://arxiv.org/abs/1910.07533}{arxiv:1910.07533}) \end{itemize} [[!redirects flavour anomalies]] [[!redirects flavor anomaly]] [[!redirects flavor anomalies]] \end{document}