\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{floor} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{arithmetic}{}\paragraph*{{Arithmetic}}\label{arithmetic} [[!include arithmetic geometry - contents]] \hypertarget{floors_and_ceilings}{}\section*{{Floors and ceilings}}\label{floors_and_ceilings} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{AsAdjointFunctors}{As adjoint functors}\dotfill \pageref*{AsAdjointFunctors} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The floor and ceiling of a [[real number]] are [[integers]], the result of rounding the real number down or up (respectively). When viewed as [[functions]] from $\mathbb{R}$ to itself (or to $\mathbb{Z}$), these are standard examples of functions exhibiting partial notions of [[continuity]]: the floor function is both [[right-continuous map|right-continuous]] and [[upper semicontinuous map|upper semicontinuous]], while the ceiling function is both [[left-continuous map|left-continuous]] and [[lower semicontinuous map|lower semicontinuous]]. They are [[step functions]] used to approximate definite [[integrals]] of [[continuous maps]] and otherwise to relate integrals and [[series]]. They provide convenient notation to express various notions of [[rounding]]. From the perspective of [[order theory]], the maps may be seen as the [[right adjoint]] and [[left adjoint]] (respectively) of the [[inclusion map]] from $\mathbb{Z}$ to $\mathbb{R}$. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} Given a [[real number]] $x$, the \textbf{floor} of $x$, denoted $\lfloor{x}\rfloor$ or $[x]$, is the largest integer $n$ such that $n \leq x$, and the \textbf{ceiling} of $x$, denoted $\lceil{x}\rceil$, is the smallest integer $n$ such that $n \geq x$. Typically the notation $\lfloor{x}\rfloor$ is used when both floor and ceiling appear, but $[x]$ is often easier when only the floor is considered. Since \begin{displaymath} \lceil{x}\rceil = -\lfloor{-x}\rfloor , \end{displaymath} this is not actually a restriction. The floor of $x$ is also called the \textbf{integer part} of $x$, and then one refers as well to the \textbf{fractional part} of $x$, denoted $\{x\}$, defined by \begin{displaymath} \{x\} = x - [x] . \end{displaymath} One must of course prove that the floor of $x$ exists; this fails in [[constructive mathematics]], although the floor of $x$ exists for [[full set|almost all]] $x$, and all of these functions can still be defined as continuous maps between appropriate [[locales]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{AsAdjointFunctors}{}\subsubsection*{{As adjoint functors}}\label{AsAdjointFunctors} We discuss how the floor and celing functions are left and right [[adjoint functors]] to the inclusion of the [[integers]] into the [[real numbers]], if both are regarded as [[posets]], and hence as [[categories]]. \begin{example} \label{PartiallyOrderedSetsAsSmallCategories}\hypertarget{PartiallyOrderedSetsAsSmallCategories}{} \textbf{([[preordered sets]] as [[thin categories]])} Let $(S, \leq)$ be a [[preordered set]]. Then this induces a [[small category]] whose [[set]] of [[objects]] is $S$, and which has precisely one morphism $x \to y$ whenever $x \leq y$, and no such morphism otherwise: \begin{equation} x \overset{\exists !}{\to} y \phantom{AAA} \text{precisely if} \phantom{AAA} x \leq y \label{RelationsAsMorphismInPartiallyOrderedSet}\end{equation} Conversely, every [[small category]] with at most one morphism from any object to any other, called a \emph{[[thin category]]}, induces on its set of objects the [[structure]] of a [[partially ordered set]] via \eqref{RelationsAsMorphismInPartiallyOrderedSet}. Here the [[axioms]] for [[preordered sets]] and for [[categories]] match as follows: \newline | $\phantom{A}$[[partially ordered sets]]$\phantom{A}$ | $\phantom{A}$ $x \leq x$ $\phantom{A}$ | $\phantom{A}$ $(x \leq y \leq z) \Rightarrow (x \leq z)$ $\phantom{A}$ | | $\phantom{A}$[[thin categories]]$\phantom{A}$ | $\phantom{A}$[[identity morphisms]]$\phantom{A}$ | $\phantom{A}$[[composition]]$\phantom{A}$ | \end{example} \begin{prop} \label{FloorAndCeilingAsAdjointFunctors}\hypertarget{FloorAndCeilingAsAdjointFunctors}{} \textbf{([[floor]] and [[ceiling]] as [[adjoint functors]])} Consider the canonical inclusion \begin{displaymath} \mathbb{Z}_{\leq} \overset{\phantom{AA}\iota \phantom{AA}}{\hookrightarrow} \mathbb{R}_{\leq} \end{displaymath} of the [[integers]] into the [[real numbers]], both regarded as [[preorders]] in the standard way (``lower or equal''). Regarded as [[full subcategory]]-inclusion of the corresponding [[thin categories]], via Example \ref{PartiallyOrderedSetsAsSmallCategories}, this inclusion functor has both a left and right [[adjoint functor]]: \begin{itemize}% \item the [[left adjoint]] to $\iota$ is the [[ceiling function]] \item the [[right adjoint]] to $\iota$ is the [[floor function]] \end{itemize} \begin{equation} \lceil(-)\rceil \;\;\dashv\;\; \iota \;\;\dashv\;\; \lfloor (-) \rfloor \,. \label{AdjointTriple}\end{equation} Hence this induces an [[adjoint modality]], as discussed there. The [[adjunction unit]] and [[adjunction counit]] express that each real number is in between its floor and ceiling \begin{displaymath} \iota \lfloor x \rfloor \;\leq\; x \;\leq\; \iota \lceil x \rceil \end{displaymath} Hence the [[modal objects]] in both cases are the [[integers]] among the [[real numbers]], while every real number is ceiling-submodal and floor-supmodal. \end{prop} \begin{proof} First of all, observe that we indeed have [[functors]] \begin{displaymath} \lfloor(-)\rfloor \;,\; \lceil(-)\rceil \;\;\colon\; \mathbb{R} \longrightarrow \mathbb{Z} \end{displaymath} since floor and ceiling preserve the ordering relation. Now in view of the identification of [[preorders]] with [[thin categories]] in Example \ref{PartiallyOrderedSetsAsSmallCategories}, the hom-isomorphism defining [[adjoint functors]] of the form $\iota \dashv \lfloor(-)\rfloor$ says for all $n \in \mathbb{Z}$ and $x \in \mathbb{R}$, that we have \begin{displaymath} \underset{ \in \mathbb{Z}}{\underbrace{n \leq \lfloor x \rfloor}} \;\Leftrightarrow\; \underset{ \in \mathbb{R}}{\underbrace{n \leq x }} \,. \end{displaymath} This is clearly already the defining condition on the [[floor]] function $\lfloor x \rfloor$. Similarly, the hom-isomorphism defining [[adjoint functors]] of the form $\lceil(-)\rceil \dashv \iota$ says that for all $n \in \mathbb{Z}$ and $x \in \mathbb{R}$, we have \begin{displaymath} \underset{ \in \mathbb{Z}}{\underbrace{\lceil x \rceil \leq n}} \;\Leftrightarrow\; \underset{ \in \mathbb{R}}{\underbrace{x \leq n }} \,. \end{displaymath} This is evidently already the defining condition on the [[floor]] function $\lfloor x \rfloor$. Notice that in both cases the condition of a \emph{[[natural isomorphism]]} in both variables, as required for an [[adjunction]], is automatically satisfied: For let $x \leq x'$ and $n' \leq n$, then naturality means, again in view of the identifications in Example \ref{PartiallyOrderedSetsAsSmallCategories}, that \begin{displaymath} \itexarray{ (n \leq \lfloor x \rfloor) &\Leftrightarrow& (n \leq x) \\ \Downarrow && \Downarrow \\ (n' \leq \lfloor x' \rfloor) &\Leftrightarrow& (n' \leq x') \\ \\ \in \mathbb{Z} && \in \mathbb{R} } \end{displaymath} where the logical implications are equivalently functions between [[sets]] that are either [[empty set|empty]] or [[singletons]]. But Functions between such sets are unique, when they exist. \end{proof} \hypertarget{references}{}\subsection*{{References}}\label{references} Wikipedia summarizes the basic properties: \begin{itemize}% \item English Wikipedia. Floor and ceiling functions. \href{https://en.wikipedia.org/wiki/Floor_and_ceiling_functions}{Web}. \end{itemize} Chapter 6 of these notes uses the floor and ceiling functions throughout to relate [[integrals]] and [[series]] when teaching [[infinitesimal calculus]]: \begin{itemize}% \item Toby Bartels. One-variable Calculus. \href{http://tobybartels.name/MATH-1600/2017FA/calcbook/}{Web}. \end{itemize} [[!redirects floor]] [[!redirects floors]] [[!redirects floor operation]] [[!redirects floor operator]] [[!redirects floor function]] [[!redirects floor functor]] [[!redirects floor map]] [[!redirects floor mapping]] [[!redirects ceiling]] [[!redirects ceilings]] [[!redirects ceiling operation]] [[!redirects ceiling operator]] [[!redirects ceiling function]] [[!redirects ceiling functor]] [[!redirects ceiling map]] [[!redirects ceiling mapping]] \end{document}