\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{flow of a vector field} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{differential_geometry}{}\paragraph*{{Differential geometry}}\label{differential_geometry} [[!include synthetic differential geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{traditional_definition}{Traditional definition}\dotfill \pageref*{traditional_definition} \linebreak \noindent\hyperlink{SyntheticDefinition}{Synthetic definition}\dotfill \pageref*{SyntheticDefinition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Given a [[tangent vector field]] on a [[differentiable manifold]] $X$ then its \emph{flow} is the [[group]] of [[diffeomorphisms]] of $X$ that lets the points of the manifold ``flow along the vector field'' hence which sends them along \emph{flow lines} (integral curvs) that are tangent to the vector field. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{traditional_definition}{}\subsubsection*{{Traditional definition}}\label{traditional_definition} Throughout, let $X$ be a [[differentiable manifold]] and let $v \in \Gamma(T X)$ be a continuously differentiable [[vector field]] on $X$ (i.e. of class $C^1$). \begin{defn} \label{IntegralCurve}\hypertarget{IntegralCurve}{} \textbf{(integral curves/flow lines)} An \emph{integral curve} or \emph{flow line} of the vector field $v$ is a [[differentiable function]] of the form \begin{displaymath} \gamma \;\colon\; U \longrightarrow X \end{displaymath} for $U \subset \mathbb{R}$ an [[open interval]] with the property that its [[tangent vector]] at any $t \in U$ equals the value of the vector field $v$ at the point $\gamma(t)$: \begin{displaymath} \underset{t \in U}{\forall} \left( d \gamma_t = v_{\gamma(t)} \right) \,. \end{displaymath} \end{defn} \begin{defn} \label{FlowOfAVectorField}\hypertarget{FlowOfAVectorField}{} \textbf{(flow of a vector field)} A \emph{global flow} of $v$ is a function of the form \begin{displaymath} \Phi \;\colon\; X \times \mathbb{R} \longrightarrow X \end{displaymath} such that for each $x \in X$ the function $\phi(x,-) \colon \mathbb{R} \to X$ is an integral curve of $v$ (def. \ref{IntegralCurve}). A \emph{flow domain} is an open subset $O \subset X \times \mathbb{R}$ such that for all $x \in X$ the intersection $O \cap \{x\} \times \mathbb{R}$ is an [[open interval]] containing $0$. A \emph{flow} of $v$ on a flow domain $O \subset X \times \mathbb{R}$ is a differentiable function \begin{displaymath} X \times \mathbb{R} \supset O \overset{\phi}{\longrightarrow} X \end{displaymath} such that for all $x \in X$ the function $\phi(x,-)$ is an integral curve of $v$ (def. \ref{IntegralCurve}). \end{defn} \begin{defn} \label{CompleteVectorField}\hypertarget{CompleteVectorField}{} \textbf{(complete vector field)} The vector field $v$ is called a \emph{complete vector field} if it admits a global flow (def. \ref{FlowOfAVectorField}). \end{defn} \hypertarget{SyntheticDefinition}{}\subsubsection*{{Synthetic definition}}\label{SyntheticDefinition} In [[synthetic differential geometry]] a [[tangent vector field]] is a morphism $v \colon X \to X^D$ such that \begin{displaymath} \itexarray{ && X^D \\ & {}^{\mathllap{v}}\nearrow & \downarrow^{\mathrlap{X^{\ast \to D}}} \\ X &=& X } \end{displaymath} The [[internal hom]]-[[adjunct]] of such a morphism is of the form \begin{displaymath} \tilde v \;\colon\; D \longrightarrow X^X \,. \end{displaymath} If $X$ is sufficiently nice (a [[microlinear space]] should be sufficient) then this morphism factors through the internal [[automorphism group]] $\mathbf{Aut}(X)$ inside the internal [[endomorphisms]] $X^X$ \begin{displaymath} \tilde v \;\colon\; D \longrightarrow \mathbf{Aut}(X) \hookrightarrow X^X \,. \end{displaymath} Then a group homomorphism \begin{displaymath} \phi_v \;\colon\; (R,+) \longrightarrow \mathbf{Aut}(X) \end{displaymath} with the property that restricted along any of the affine inclusions $D \hookrightarrow \mathbb{R}$ it equals $\tilde v$ \begin{displaymath} \itexarray{ D &\hookrightarrow& \mathbb{R} \\ & {}_{\mathllap{\tilde v}}\searrow & \downarrow^{\mathrlap{\phi}} \\ && \mathbf{Aut}(X) &\hookrightarrow& X^X } \end{displaymath} is a \emph{flow} for $v$. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{prop} \label{}\hypertarget{}{} Let $\phi$ be a global flow of a vector field $v$ (def. \ref{FlowOfAVectorField}). This yields an [[action]] of the additive group $(\mathbb{R},+)$ of [[real numbers]] on the [[differentiable manifold]] $X$ by [[diffeomorphisms]], in that \begin{itemize}% \item $\phi_v(-,0) = id_X$; \item $\phi_n(-,t_2) \circ \phi_v(-,t_1) = \phi_v(-, t_1 + t_2)$; \item $\phi_v(-,-t) = \phi_v(-,t)^{-1}$. \end{itemize} \end{prop} \begin{prop} \label{}\hypertarget{}{} \textbf{(fundamental theorem of flows)} Let $X$ be a [[smooth manifold]] and $v \in \Gamma(T X)$ a smooth [[vector field]]. Then $v$ has a unique maximal flow (def. \ref{FlowOfAVectorField}). This unique flow is often denoted $\phi_v$ or $\exp(v)$ (see also at \emph{[[exponential map]]}). \end{prop} e.g. \hyperlink{Lee}{Lee, theorem 12.9} \begin{prop} \label{}\hypertarget{}{} Let $X$ be a [[compact topological space|compact]] [[smooth manifold]]. Then every smooth [[vector field]] $v \in \Gamma(T X)$ is a complete vector field (def. \ref{CompleteVectorField}) hence has a global flow (def. \ref{FlowOfAVectorField}). \end{prop} e.g. \hyperlink{Lee}{Lee, theorem 12.12} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item John Lee, chapter 12 ``Integral curves and flows'' of \emph{Introduction to smooth manifolds} (\href{http://webmath2.unito.it/paginepersonali/sergio.console/lee.pdf}{pdf}) \end{itemize} [[!redirects flows of a vector field]] [[!redirects flow]] [[!redirects flows]] [[!redirects flow line]] [[!redirects flow lines]] [[!redirects integral curve]] [[!redirects integral curves]] \end{document}