\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{forcing} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{category_theory}{}\paragraph*{{Category Theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{forcing}{}\section*{{Forcing}}\label{forcing} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{an_analogy_to_polynomial_rings}{An analogy to polynomial rings}\dotfill \pageref*{an_analogy_to_polynomial_rings} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{ReferencesInTermsOfClassifyingToposes}{In terms of sheaves and classifying toposes}\dotfill \pageref*{ReferencesInTermsOfClassifyingToposes} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[set theory]], \textbf{forcing} is a way of ``adjoining indeterminate objects'' to a [[model]] in order to make certain [[axioms]] [[true]] or [[false]] in a resulting new model. The language of forcing is generally used in [[material set theory]]. From the point of view of [[structural set theory]]/[[categorical logic]] it is more or less equivalent to the construction of [[categories of sheaves]] in [[topos theory]] and [[structural set theory]]: here a [[classifying topos]] of a [[theory]] is a ``category of sets'' that is ``forced'' to contain a generic model of the theory. \hypertarget{an_analogy_to_polynomial_rings}{}\subsection*{{An analogy to polynomial rings}}\label{an_analogy_to_polynomial_rings} There are three ways in which to describe the construction of forcing, which can be explained by analogy to a situation in algebra. Suppose that we have a [[ring]] $R$ and we want to know what $R$ would be like if it had a nilsquare element, i.e. an $x$ such that $x^2=0$, although we don't know whether $R$ \emph{actually} has any nilsquare elements. There are several things we could do. \begin{enumerate}% \item We could consider some larger ring $S$ which contains $R$ as a subring, and also contains some nilsquare element $x$, and then study the subring of $S$ generated by $R$ and $x$, using only our knowledge that it contains $R$ and $x$ and that $x$ is nilsquare. \item We could work formally in the [[theory]] of $R$ with an extra variable $x$ and the axiom that $x^2=0$, avoiding consideration of any new rings at all. \item We could construct the polynomial ring $R[x]$ and quotient by the ideal $(x^2)$, resulting in the \emph{universal} ring $R[x]/(x^2)$ containing $R$ and also a nilsquare element. \end{enumerate} Obviously these are more or less equivalent ways of doing the same thing. Arguably, most modern mathematicians would find the third the most natural. It is certainly the most [[category theory|category-theoretic]] and the most in line with the [[nPOV]]. Now suppose instead that we have a model $V$ of [[ZF]] set theory (for instance), and we want to know what $V$ would be like if it contained a set $G$ satisfying some particular properties. We can likewise take three approaches. \begin{enumerate}% \item We can assume that $V$ sits inside some larger model of ZF, in such a way that there is a set $G$ outside of $V$ and the ``model generated by $V$ and $G$'' called $V[G]$ satisfies the desired properties. The $G$ is called a \emph{generic} set for the desired ``notion of forcing.'' There is an extra wrinkle in this approach in that such a $G$ will not generally exist unless we assume that $V$ is [[countable set|countable]]. But for purposes of independence proofs in [[classical mathematics]], this is no problem, since the downward [[Löwenheim-Skolem theorem]] guarantees that if ZF is consistent, then it has a countable model. \item We can define a new notion of ``truth'' for statements about $V$, which is not the same as the old one, and which will usually take values not in ordinary [[truth values]] but in some more complicated [[Boolean algebra]] (or [[Heyting algebra]]), in such a way so that the statement ``there exists a $G$ with the desired properties'' is ``true.'' This is called \emph{forcing semantics}. \item We can construct a new model of set theory out of whole cloth from $V$, rather than trying to find it as a submodel of some assumed larger model. In material set theory, this construction is usually called a \emph{Boolean valued model} (or a \emph{Heyting valued model} if it is [[constructive mathematics|intuitionistic]]). In structural set theory, this construction is simply that of the [[topos of sheaves]] on a suitable [[site]], in the model $V$. The topos of sheaves is moreover \emph{universal} over $V$ such that it contains an [[object]] $G$ satisfying the desired properties in its [[internal logic]]---in other words, it is a [[classifying topos]] of the [[theory]] of such a $G$. See at \emph{\hyperlink{ReferencesInTermsOfClassifyingToposes}{References -- In terms of classifying toposes}} for more. \end{enumerate} Although by analogy, it would seem that a modern perspective should prefer the third approach, most material set theorists still seem to prefer one of the first two. Before [[Paul Cohen|Cohen]] showed how forcing could give rise to models of ZF(C), [[Abraham Fraenkel|Fraenkel]] introduced the method of [[permutation model]]s (later refined by Mostowski and Specker), which gave models of [[ZFA]], a version of ZF with [[urelements|atoms]]. See for example the [[basic Fraenkel model]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[double negation topology]] \item [[homotopy type theory FAQ]] -- \href{http://ncatlab.org/nlab/show/homotopy+type+theory+FAQ}{What is homotopy type theory? -- For set theorists} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Exposition is in \begin{itemize}% \item [[Timothy Chow]], \emph{A beginner's guide to forcing}, Contemp. Math (\href{https://arxiv.org/abs/0712.1320}{arXiv:0712.1320}) \end{itemize} Another good introduction is in \hyperlink{Schoenfield71}{Schoenfield 71} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \begin{itemize}% \item [[Paul Cohen]], \emph{Set theory and the [[continuum hypothesis]]}, Benjamin, New York 1966 \item [[Gonzalo Reyes]], \emph{Typical and generic in a Baire space for relations}, thesis 1967 \item [[Abraham Robinson]], \emph{Infinite forcing in model theory}, in Proc. 2nd Scand. Logic Synp. pp. 317-340, ed. J. E. Fenstad \item Jon Barwise ed. \emph{Handbook of mathematical logic}, 1977, in chapters by Macintyre, Burgess and Keisler \item J. R. Schoenfield, \emph{Unramified forcing}, pp. 383--395 in: Axiomatic set theory, vol. 1, ed. D. S. Scott, Proc. Symp. Pure Math. \textbf{13} (1971) ((\href{https://www.math.ucsd.edu/~sbuss/CourseWeb/Math260_2012F2013W/Shoenfield_UnramifiedForcing.pdf}{pdf})) \item S. Shelah, \emph{Proper and Improper Forcing} , Perspectives in Math. Logic vol. 5 Springer Heidelberg 1998. (\href{http://projecteuclid.org/euclid.pl/1235419814#toc}{toc}) \item [[Paul Cohen]], \emph{The Discovery of Forcing}, Rocky Mountain J. Math. Volume 32, Number 4 (2002), 1071-1100. (\href{http://projecteuclid.org/euclid.rmjm/1181070010}{Euclid}) \item math overflow, what is the generic poset used in forcing really?, \href{http://mathoverflow.net/questions/51187/what-is-the-generic-poset-used-in-forcing-really}{web} \end{itemize} \hypertarget{ReferencesInTermsOfClassifyingToposes}{}\subsubsection*{{In terms of sheaves and classifying toposes}}\label{ReferencesInTermsOfClassifyingToposes} Discussion of the interpretation of forcing as the passage to [[classifying toposes]] includes \begin{itemize}% \item [[Michael Makkai]], [[Gonzalo Reyes]], \emph{First Order Categorical Logic}, Lecture Notes in Mathematics Volume 611, Springer 1977 \item Andrej Ščedrov, \emph{Forcing and classifying topoi}, Memoirs of the American Mathematical Society 1984; 93 pp \item [[Andreas Blass]], Andrej Ščedrov, \emph{Classifying topoi and finite forcing} (\href{http://deepblue.lib.umich.edu/bitstream/handle/2027.42/25225/0000666.pdf}{pdf}) \item [[David Roberts]], \emph{Class forcing and topos theory}, talk at \emph{\href{https://indico.math.cnrs.fr/event/747/}{Topos at l'IHES}} 2015 (\href{https://doi.org/10.4225/55/5b2252e3092af}{talk notes}, \href{https://youtu.be/4AaSySq8-GQ}{video recording}) \end{itemize} On \hyperlink{Scedrov84}{Scedrov 84}, [[Peter Johnstone]] writes in his review (\href{http://www.jstor.org/stable/2274338}{The Journal of Symbolic Logic Vol. 50, No. 3 (Sep., 1985), pp. 852-85}): \begin{quote}% Until recently, logicians could have been forgiven for treating topos theory as a closed book, whose applications to logic (however interesting they might appear from the outside) were accessible only to insiders well schooled in the mysteries of category theory $[...]$ $[$ Ščedrov's book makes $]$ a very clear case for the advantages of the topos-theoretic approach to forcing namely, that it provides a clear conceptual view of what generic structures really are, as well as a workable mean $[...]$ Although categorical ideas and terminology are inevitably present, they are handled so skilfully that the categoriphobic reader need have few qualms about them $[...]$ Ščedrov's work ought to go a long way towards demolishing the wall of incomprehension that has hitherto prevented many logicians from appreciating what topos theory has to offer their subject. \end{quote} [[!redirects forcing]] \end{document}