\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{formal scheme} \begin{quote}% under construction \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{geometry}{}\paragraph*{{Geometry}}\label{geometry} [[!include higher geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{motivation}{Motivation}\dotfill \pageref*{motivation} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{formal_spectra_of_noetherian_rings}{Formal spectra of Noetherian rings}\dotfill \pageref*{formal_spectra_of_noetherian_rings} \linebreak \noindent\hyperlink{more_general_indschemes}{More general ind-schemes}\dotfill \pageref*{more_general_indschemes} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{FormalPowerSeries}{Formal power series and their formal spectra}\dotfill \pageref*{FormalPowerSeries} \linebreak \noindent\hyperlink{formal_neighbourhood_of_the_diagonal}{Formal neighbourhood of the diagonal}\dotfill \pageref*{formal_neighbourhood_of_the_diagonal} \linebreak \noindent\hyperlink{formal_groups}{Formal groups}\dotfill \pageref*{formal_groups} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{formal scheme} is a [[formal neighbourhood]] of a [[scheme]], a scheme with infinitesimal thickening. Generally this may be formalized via [[ind-objects]] of schemes. Hence regarded as a [[sheaf]] on [[affine schemes]], a formal scheme is a [[filtered colimit]] of ordinary schemes (e.g. \hyperlink{Strickland00}{Strickland 00, section 4}). Regarded as a [[locally ringed space]] a formal scheme has the underlying [[topological space]] of an ordinary [[scheme]], but its [[structure sheaf]] contains extra nilpotent elements. \hypertarget{motivation}{}\subsection*{{Motivation}}\label{motivation} Formal [[power series]] [[ring]]s $k[\![x_1,\ldots,x_n]\!]$ are limits of their truncations (e.g. in one variable $k[\![x]\!]/(x^n)$); they can be viewed as completions and they get equipped with a natural filtration and [[adic topology]]. They do not converge as a series (and make sense) in an open set or in any of the standard topologies (e.g. Zariski and complex topology over $\mathbb{Z}$), but they are rather ``localized'' in an \emph{[[infinitesimal neighborhood|infinitesimal neighborhood]]} of the origin. One would like to be able to talk about functions supported only infinitesimally (in the transverse direction) to a [[closed subscheme]]. The formal schemes of [[Grothendieck]] are [[ringed spaces]] containing the information on all infinitesimal neighborhoods. Zariski's theorem on formal functions and establishing the theory of [[formal group]]s were some of the concrete motivations. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} There are roughly four equivalent definitions of a $k$-formal scheme for a field $k$ (check this): Let $Mf_k$ denote the category of finite dimensional $k$-rings (=$k$-algebras which are rings). \begin{enumerate}% \item A $k$-scheme is called a $k$\emph{-formal scheme} if it is is equivalent to a [[filtered colimit|codirected colimit]] of finite (affine) $k$-schemes. \item A $k$-scheme is a $k$-formal scheme if it is presented by a [[profinite group|profinite]] $k$-ring; i.e a $k$-ring which is the limit of topologically discrete quotients which are finite $k$-rings. If $A$ is such a topological $k$-ring $Spf_k(A)(R)$ denotes the set of continous morphisms from $A$ to the topologically discrete ring $R$. We have $Spf_k$ is a (contravariant) equivalence between the category of profinite $k$-rings and the category $fSch_k$ of formal $k$-schemes. \item Instead of defining the category $fSch_k$ of formal $k$-schemes as the [[opposite category|opposite]] of $Mf_k$ define it instead covariantly on the category of finite dimensional $k$-[[coring|corings]]. \item A formal $k$-scheme is precisely a left exact (commuting with finite limits) functor $X:Mf_k\to Set$. \end{enumerate} (\hyperlink{Demp}{Demazure, p-divisible groups, chapter I}) The inclusion $Mf_k\hookrightarrow M_k$ induces a functor \begin{displaymath} {}^\hat\; :Sch_k\to fSch_k \end{displaymath} called \emph{completion functor}. \hypertarget{formal_spectra_of_noetherian_rings}{}\subsubsection*{{Formal spectra of Noetherian rings}}\label{formal_spectra_of_noetherian_rings} If $X$ is a [[scheme]], a [[closed subscheme]] $Y\subset X$ is given by an embedding of topological spaces with the [[comorphism]] $\mathcal{O}_X\to f_*\mathcal{O}_Y$ which is a surjection; but alternatively $\mathcal{O}_Y$ can be recovered from $X$ and the defining sheaf of ideals $\mathcal{I}\subset \mathcal{O}_X$. Then one defines the [[structure sheaf]] of the completion $\mathcal{O}_{\hat{X}}$ as $lim_n \mathcal{O}_X/\mathcal{I}^n$ restricted to $Y$ and the \textbf{completion} $\hat{X} := (Y,\mathcal{O}_{\hat{X}})$. If $X = Spec\,R$ where $R$ is a noetherian $I$-adic ring, and $Y=Spec\,R/I$ then the completion is called the \textbf{[[formal spectrum]]} of $R$ denoted \begin{displaymath} Spf\,R = \hat{X} \end{displaymath} (where $R$ is viewed as a topological ring). The formal spectrum is an [[ind-object]] in the [[category]] of [[algebraic schemes]], viewed as a formal colimit $colim_n Spec (R/I^n)$. A (locally) noetherian formal scheme is a formal completion of a (locally) noetherian scheme along a closed subscheme. Equivalently, a locally noetherian scheme is a locally ringed space which is locally isomorphic to the formal spectrum of a complete separated adic noetherian ring. \hypertarget{more_general_indschemes}{}\subsubsection*{{More general ind-schemes}}\label{more_general_indschemes} The formal spectrum can be extended to a somewhat bigger class of topological rings than the noetherian ones; Grothendieck developed the theory in the generality of [[pseudocompact ring|pseudocompact]] topological rings. However, some important rings, e.g. the ring of [[integers]] $\mathbb{Z}$, do not have a pseudocompact topology. Thus one could try to consider a more general subcategory of [[ind-schemes]] (with at least the requirement that the [[ind-object]] be represented by a diagram where the connecting morphisms are [[closed subscheme|closed immersions of schemes]]); one such approach is outlined in some detail in (\hyperlink{BeilinsonDrinfeld}{Beilinson-Drinfeld}). \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{FormalPowerSeries}{}\subsubsection*{{Formal power series and their formal spectra}}\label{FormalPowerSeries} The [[completion of a ring]] of the [[polynomial ring]] $\mathbb{Z}[x]$ (the [[formal dual]] to the [[affine line]] $\mathbb{A}^1$) at the ideal $(x)$ is the [[limit]] -- formed in the [[category]] [[CRing]] -- \begin{displaymath} \mathbb{Z}[x]^\wedge_{(x)} = \underset{\longleftarrow}{lim}_n (\mathbb{Z}[x])/(x^{n+1}) \end{displaymath} of the [[quotient rings]] of $\mathbb{Z}[x]$ by the ideals generated by $x^{n+1}$ (the [[ring of dual numbers]] and its higher analogs). This yields the [[formal power series]] ring \begin{displaymath} \mathbb{Z}[x]^\wedge_{(x)} \simeq \mathbb{Z}[ [x] ] \,. \end{displaymath} Notice that the formal power series ring contains \emph{no} nilpotent elements except for zero -- even though each filtering stage $(\mathbb{Z}[x])/(x^n)$ does. In contrast, the [[filtered colimit]] of the [[sheaves]] on [[affine varieties]] $Spec(R)$ that are [[representable functor|represented]] by this system of nilpotent rings is the formal scheme \begin{displaymath} \widehat{\mathbb{A}^1} = \underset{\longrightarrow}{lim}_n Spec(\mathbb{Z}[x]/(x^{n+1})) \;\;\; \in Sh(Aff) = Sh(CRing^{op}) \end{displaymath} given by the sheaf which sends each ring to its [[nilradical]] \begin{displaymath} \widehat{\mathbb{A}^1} \;\colon\; Spec(R) \mapsto Nil(R) \,. \end{displaymath} (see e.g. \hyperlink{Strickland00}{Strickland 00, example 4.2, example 4.18}). \hypertarget{formal_neighbourhood_of_the_diagonal}{}\subsubsection*{{Formal neighbourhood of the diagonal}}\label{formal_neighbourhood_of_the_diagonal} See at \emph{[[formal neighbourhood of the diagonal]]}. \hypertarget{formal_groups}{}\subsubsection*{{Formal groups}}\label{formal_groups} The [[group objects]] in formal schemes are the [[formal groups]]. See there for more. \hypertarget{references}{}\subsection*{{References}}\label{references} Classical discussion includes \begin{itemize}% \item [[Alexander Grothendieck]], \emph{G\'e{}om\'e{}trie formelle et g\'e{}om\'e{}trie alg\'e{}brique}, FGA 2 (S\'e{}minaire Bourbaki, t. 11, 1958/59, no. 182) \item [[Luc Illusie]], \emph{Grothendieck existence theorem in formal geometry}, chapter 8 in Fantechi, Gottsche, Illusie, Kleiman, Nitsure, Vistoli, \emph{Fundamental algebraic geometry, Grothendieck's [[FGA explained]], Math. Surveys and Monographs} \textbf{123}, AMS 2005 (draft version \href{http://cdsagenda5.ictp.it//askArchive.php?categ=a0255&id=a0255s3t3&ifd=15021&down=1&type=lecture_notes}{pdf}) \item A. Grothendieck (avec J. Dieudonne), [[EGA]] I.10 \item A. Grothendieck et al. [[SGA]] III.2 (Exp. 7a, P. Gabriel, \'E{}tude infinit\'e{}simale des sch\'e{}mas en groupe et groupes formels; Exp. 7b, P. Gabriel, Groupes formels) \item R. Hartshorne, \emph{Algebraic geometry}, II.9 \item M. Demazure, P. Gabriel, \emph{Groupes algebriques}, tome 1 (later volumes never appeared), Mason and Cie, Paris 1970 \item Michel Demazure, lectures on p-divisible groups \href{http://sites.google.com/site/mtnpdivisblegroupsworkshop/lecture-notes-on-p-divisible-groups}{web} \item [[Daniel Murfet]], notes \href{http://therisingsea.org/notes/Section2.9-FormalSchemes.pdf}{Section2.9-FormalSchemes.pdf} \item Leovigildo Alonso, Ana Jeremias, Marta Perez, \emph{Infinitesimal lifting and Jacobi criterion for smoothness on formal schemes} (\href{http://arxiv.org/abs/math/0604241}{arXiv:math/0604241}) \end{itemize} More general discussion in terms of ind-schemes includes \begin{itemize}% \item A. Beilinson, V. Drinfel'd, \emph{Quantization of Hitchin's integrable system and Hecke eigensheaves on Hitchin system}, preliminary version (\href{http://www.math.uchicago.edu/~mitya/langlands/hitchin/BD-hitchin.pdf}{pdf}) \end{itemize} Another approach using a certain topological extension of the [[Yoneda lemma]] on $k Alg^{op}$ has been proposed in \begin{itemize}% \item B. Pareigis, R. A. Morris, \emph{Formal groups and Hopf algebras over discrete rings}, Trans. Amer. Math. Soc. \textbf{197} (1974), 113--129 (\href{http://dx.doi.org/10.2307/1996930}{doi}, [[Morris-Pareigis formal scheme|nlab entry]]). \end{itemize} [[Nikolai Durov]] has considered a flexible bigger category (which inludes the usual schemes) of covariant functors from the category of pairs $(R,I)$ where $R$ is a commutative ring and $I$ a [[nilpotent ideal]]; the correspondence between formal groups and [[Lie algebras]] based on Hausdorff series is neatly developed and used in that language; see chapters 7--9 of \begin{itemize}% \item N. Durov, S. Meljanac, A. Samsarov, Z. \v{S}koda, \emph{A universal formula for representing Lie algebra generators as formal power series with coefficients in the Weyl algebra}, Journal of Algebra 309, n. 1, 318--359 (2007) (\href{http://dx.doi.org/10.1016/j.jalgebra.2006.08.025}{doi:jalgebra}) (\href{http://front.math.ucdavis.edu/math.RT/0604096}{math.RT/0604096}). \end{itemize} For another generalization of formal schemes see \begin{itemize}% \item T. Yasuda, \emph{Non-adic formal schemes}, Int. Math. Research Notices 2009: 2417--2475, (\href{http://dx.doi.org/10.1093/imrn/rnp021}{doi:imrn}, \href{http://arxiv.org/abs/0711.0434}{arxiv}) \end{itemize} In a fundamental article in [[noncommutative algebraic geometry]], \begin{itemize}% \item M. Kapranov, \emph{Noncommutative geometry based on commutator expansions}, \href{http://arxiv.org/abs/math.AG/9802041}{math.AG/9802041}, \end{itemize} Kapranov introduced objects which should be interpreted as the infinitesimal neighborhoods of those commutative schemes with a closed immersion into a noncommutative scheme which is locally isomorphic to the spectrum of a free associative algebra. And a decidedly functorial perspective is in (section 4 of) \begin{itemize}% \item [[Neil Strickland]], \emph{Formal schemes and formal groups}, \href{http://arxiv.org/abs/math.AT/0011121}{math.AT/0011121} \end{itemize} For the scheme geometric picture behind the infinitesimal neighborhoods and [[D-modules]] see also \begin{itemize}% \item A. Belinson, J. Bernstein, J., \emph{A proof of Jantzen conjectures}, in I. M. Gelfand Seminar, 1--50, Adv. Soviet Math., 16, Part 1, Amer. Math. Soc., Providence, RI, 1993 (MR1237825 (95a:22022)) \end{itemize} Some aspects of formal completions from the point of view of the derived categories are in \begin{itemize}% \item [[Dmitri Orlov|D. Orlov]], \emph{Formal completions and idempotent completions of triangulated categories of singularities}, \href{http://arxiv.org/abs/0901.1859}{arxiv/0901.1859} \item Alexander I. Efimov, \emph{Formal completion of a category along a subcategory}, \href{http://arxiv.org/abs/1006.4721}{arxiv/1006.4721} \end{itemize} [[!redirects formal schemes]] \end{document}