\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{formal topology} \begin{quote}% This entry is about a generalized notion of [[topology]]. For the notion of \emph{formal space} in the sense of [[rational homotopy theory]], see [[formal dg-algebra]]. \end{quote} \vspace{.5em} \hrule \vspace{.5em} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{formal_topology}{}\section*{{Formal topology}}\label{formal_topology} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Formal topology is a programme for doing [[topology]] in a [[finite mathematics|finite]], [[predicative mathematics|predicative]], and [[constructive mathematics|constructive]] fashion. It is a kind of [[pointless topology]]; in the context of [[classical mathematics]], it reproduces the theory of [[locales]] rather than [[topological spaces]] (although of course one can recover topological spaces from locales). The basic definitions can be motivated by an attempt to study locales entirely through the [[posites]] that generate them. However, in order to recover all basic topological notions (particularly those associated with \emph{closed} rather than \emph{open} features) predicatively, we need to add a `positivity' relation to the `coverage' relation of sites. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} A \textbf{formal topology} or \textbf{formal space} is a [[set]] $S$ together with \begin{itemize}% \item an [[element]] $\top$ of $S$, \item a [[binary operation]] $\cap$ on $S$, \item a [[binary relation]] $\lhd$ between elements of $S$ and [[subsets]] of $S$, and \item a [[unary relation]] $\Diamond$ on $S$, \end{itemize} such that \begin{enumerate}% \item $a = b$ whenever $a \lhd \{b\}$ and $b \lhd \{a\}$, \item $a \lhd U$ whenever $a \in U$, \item $a \lhd V$ whenever $a \lhd U$ and $x \lhd V$ for all $x \in U$, \item $a \cap b \lhd U$ whenever $a \lhd U$ or $b \lhd U$, \item $a \lhd \{ x \cap y \;|\; x \in U,\; y \in V \}$ whenever $a \lhd U$ and $a \lhd V$, \item $a \lhd \{\top\}$, \item $\Diamond x$ for some $x \in U$ whenever $\Diamond a$ and $a \lhd U$, and \item $a \lhd U$ whenever $a \lhd U$ if $\Diamond a$, \end{enumerate} for all $a$, $b$, $U$, and $V$. We interpret the elements of $S$ as \textbf{basic opens} in the formal space. We call $\top$ the \textbf{[[improper subset|entire space]]} and $a \cap b$ the \textbf{[[intersection]]} of $a$ and $b$. We say that $a$ is \textbf{covered} by $U$ or that $U$ is a \textbf{[[cover]]} of $a$ if $a \lhd U$. We say that $a$ is \textbf{positive} or \textbf{[[inhabited subset|inhabited]]} if $\Diamond a$. (For a [[topological space]] equipped with a strict [[topological base]] $S$, taking these intepretations literally does in fact define a formal space; see the Examples.) Some immediate points to notice: \begin{itemize}% \item If we drop (1), then the hypothesis of (1) defines an [[equivalence relation]] on $S$ which is a [[congruence]] for $\top$, $\cap$, $\lhd$, and $\Diamond$, so that we may simply pass to the [[quotient set]]. In appropriate foundations, we can even allow $S$ to be a [[preset]] originally, then use (1) as a definition of equality. \item We can prove that $(S,\cap,\top)$ is a bounded [[semilattice]]; if (as the notation suggests) we interpret this as a [[meet]]-semilattice, then $a \leq b$ if and only if $a \lhd \{b\}$. Conversely, we could require that $(S,\cap,\top)$ be a semilattice originally, then let (1) say that $a \leq b$ whenever $a \lhd \{b\}$. \item We can prove that $\Diamond a$ holds iff every cover of $a$ is inhabited and that $\Diamond a$ fails iff $a \lhd \empty$. Accordingly, this predicate is uniquely definable (in two equivalent ways, one impredicative and one nonconstructive) in a classical treatment; only in a treatment that is both predicative and constructive do we need to include it in the axioms. See [[positivity predicate]]. \end{itemize} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} Let $X$ be a [[topological space]], and let $S$ be the collection of [[open subsets]] of $X$. Let $\top$ be $X$ itself, and let $a \cap b$ be the literal intersection of $a$ and $b$ for $a, b \in S$. Let $a \lhd U$ if and only $U$ is literally an [[open cover]] of $a$, and let $\Diamond a$ if and only if $a$ is literally inhabited. Then $(S,\top,\cap,\lhd,\Diamond)$ is a formal topology. The above example is impredicative (since the collection of open subsets is generally large), but now let $S$ be a [[base for the topology]] of $X$ which is strict in the sense that it is closed under finitary [[intersection]]. Let the other definitions be as before. Then $(S,\top,\cap,\lhd,\Diamond)$ is a formal topology. More generally, let $B$ be a [[subbase]] for the topology of $X$, and let $S$ be the [[free monoid]] on $B$, that is the set of [[finite lists]] of elements of $B$ (so this example is not strictly finitist), modulo the [[equivalence relation]] by which two lists are identified if their [[intersections]] are equal. Let $\top$ be the [[empty list]], let $a \cap b$ be the [[concatenation]] of $a$ and $b$, let $a \lhd U$ if the intersection of $a$ is contained in the [[union]] of the intersections of the elements of $U$, and let $\Diamond a$ if the intersection of $a$ is inhabited. Then $(S,\top,\cap,\lhd,\Diamond)$ is a formal topology. Let $X$ be an [[accessible locale]] generated by a [[posite]] whose underlying [[poset]] $S$ is a (meet)-[[semilattice]]. Let $\top$ and $\cap$ be as in the semilattice structure on $S$, and let $a \lhd U$ if $U$ contains a basic cover (in the posite structure on $S$) of $a$. Then we get a formal topology, defining $\Diamond$ in the unique way. The last example is not predicative, and this is in part \emph{why} one studies formal topologies instead of sites, if one wishes to be strictly predicative. (It still needs to be motivated that we want $\Diamond$ at all.) \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Mike Fourman]] and Grayson (1982); \emph{Formal Spaces}. This is the original development, intended as an application of locale theory to logic. \item [[Giovanni Sambin]] (1987); \emph{Intuitionistic formal spaces}; \href{http://www.math.unipd.it/~sambin/txt/ifs87-97.pdf}{pdf}. \begin{itemize}% \item This is the probably the main reference on the subject. \item Warning: you can ignore the material about [[foundations]] and [[type theory]], but if you do read any of it, the term `category' means (roughly) [[proper class]]; this was common in type theory in the 1980s. \end{itemize} \item [[Giovanni Sambin]] (2001); \emph{Some points in formal topology}; \href{http://www.math.unipd.it/~sambin/txt/SP.pdf}{pdf}. This has newer results, alternative formulations, etc. \item [[Erik Palmgren]], \emph{From Intuitionistic to Point-Free Topology: On the Foundation of Homotopy Theory}, Logicism, Intuitionism, and Formalism Volume 341 of the series Synthese Library pp 237-253, 2005 (\href{http://www2.math.uu.se/~palmgren/homotopy_rev2.pdf}{pdf}) \end{itemize} [[!redirects formal topology]] [[!redirects formal topologies]] [[!redirects formal space]] [[!redirects formal spaces]] [[!redirects formal topological space]] [[!redirects formal topological spaces]] \end{document}