\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{formally smooth morphism} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{tale_morphisms}{}\paragraph*{{\'E{}tale morphisms}}\label{tale_morphisms} [[!include etale morphisms - contents]] \hypertarget{geometry}{}\paragraph*{{Geometry}}\label{geometry} [[!include higher geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{GeneralAbstractNotion}{General abstract notion}\dotfill \pageref*{GeneralAbstractNotion} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{ConcreteNotion}{Concrete notion}\dotfill \pageref*{ConcreteNotion} \linebreak \noindent\hyperlink{OverCommutativeRings}{Over commutative rings}\dotfill \pageref*{OverCommutativeRings} \linebreak \noindent\hyperlink{smoothness_versus_formal_smoothness}{Smoothness versus formal smoothness}\dotfill \pageref*{smoothness_versus_formal_smoothness} \linebreak \noindent\hyperlink{formally_smooth_scheme}{Formally smooth scheme}\dotfill \pageref*{formally_smooth_scheme} \linebreak \noindent\hyperlink{over_noncommutative_algebras}{Over noncommutative algebras}\dotfill \pageref*{over_noncommutative_algebras} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A [[space]] $X$ is called \textbf{formally smooth} if every [[morphism]]s $Y \to X$ into it has all possible [[infinitesimal object|infinitesimal]] extensions. (If there is at most one extension per infinitesimal extension of $Y$ with no guarantee of existence it is called a [[formally unramified morphism]]. If the thickenings exist uniquely, it is called a [[formally etale morphism]]). Traditionally this has considered in the context of [[geometry]] over formal duals of [[ring]]s and [[associative algebra]]s. This we discuss in the section (\hyperlink{ConcreteNotion}{Concrete notion}). But generally the notion makes sense in any context of . This we discuss in the section \hyperlink{GeneralAbstractNotion}{General abstract notion}. \hypertarget{GeneralAbstractNotion}{}\subsection*{{General abstract notion}}\label{GeneralAbstractNotion} \hypertarget{definition}{}\subsubsection*{{Definition}}\label{definition} Let \begin{displaymath} \mathbf{H} \stackrel{\overset{u^*}{\hookrightarrow}}{\stackrel{\overset{u_*}{\leftarrow}}{\underset{u^!}{\to}}} \mathbf{H}_{th} \end{displaymath} be an [[adjoint triple]] of [[functors]] with $u^*$ a [[full and faithful functor]] that preserves the [[terminal object]]. We may think of this as exhibiting (see there for details, but notice that in the notation used there we have $u^* = i_!$, $u_* = i^*$ and $u^! = i_*$). We think of the objects of $\mathbf{H}$ as [[cohesive topos|cohesive space]]s and of the objects of $\mathbf{H}_{th}$ as such cohesive spaces possibly equipped with [[infinitesimal object|infinitesimal extension]]. As a class of examples that is useful to keep in mind consider a [[Q-category]] $(cod \dashv \epsilon \dashv dom) : \bar A \to A$ of and let \begin{displaymath} ((u^* \dashv u_* \dashv u^!) : \mathbf{H}_{th} \to \mathbf{H}) := ([dom,Set] \dashv [\epsilon, Set] \dashv [codom,Set] : [\bar A, Set] \to [A,Set]) \end{displaymath} be the corresponding . For any such setup there is a canonical [[natural transformation]] \begin{displaymath} u^* \to u^! \,. \end{displaymath} Details of this are in the section at [[cohesive topos]]. From this we get for every morphism $f : X \to Y$ in $\mathbf{H}$ a canonical morphism \begin{equation} u^* X \to u^* Y \prod_{u^! Y} u^! X \,. \label{MorphismIntoPullback}\end{equation} \begin{defn} \label{AbstractFormallySmoothMorphism}\hypertarget{AbstractFormallySmoothMorphism}{} A morphism $f : X \to Y$ in $\mathbf{H}$ is called \textbf{formally smooth} if \eqref{MorphismIntoPullback} is an [[effective epimorphism]]. \end{defn} This appears as (\hyperlink{KontsevichRosenbergSpaces}{KontsevichRosenberg, def. 5.1, prop. 5.3.1.1}). The dual notion, where the above morphism is a [[monomorphism]] is that of [[formally unramified morphism]]. If both conditions hold, hence if the above morphism is an [[isomorphism]], one speaks of a [[formally étale morphism]]. \begin{defn} \label{AbstractFormallySmoothObject}\hypertarget{AbstractFormallySmoothObject}{} An object $X \in \mathbf{H}$ is called \textbf{formally smooth} if the morphism $X \to *$ to the [[terminal object]] is formally smooth. \end{defn} \begin{prop} \label{AbstractFormallySmoothObjectDirect}\hypertarget{AbstractFormallySmoothObjectDirect}{} The object $X$ is formally smooth precisely if \begin{displaymath} u^* X \to u^! X \end{displaymath} is an [[effective epimorphism]]. \end{prop} This appears as (\hyperlink{KontsevichRosenbergSpaces}{KontsevichRosenberg, def. 5.3.2}). \hypertarget{properties}{}\subsubsection*{{Properties}}\label{properties} \begin{prop} \label{}\hypertarget{}{} Formally smooth morphisms are closed under composition. \end{prop} This appears as (\hyperlink{KontsevichRosenbergSpaces}{KontsevichRosenberg, prop. 5.4}). \hypertarget{ConcreteNotion}{}\subsection*{{Concrete notion}}\label{ConcreteNotion} \hypertarget{OverCommutativeRings}{}\subsubsection*{{Over commutative rings}}\label{OverCommutativeRings} Let $k$ be a [[field]] and let $CAlk_k$ be the [[category]] of commutative [[associative algebra]]s over $k$. Write \begin{displaymath} \mathbf{H} = [CAlg_k, Set] \end{displaymath} for the [[presheaf topos]] over the [[opposite category]] $CAlg_k^{op}$. This is the context in which [[scheme]]s and [[algebraic space]]s over $k$ live. \begin{defn} \label{CFormalSmoothness}\hypertarget{CFormalSmoothness}{} A morphism $f :X\to Y$ in $\mathbf{H} = [CAlg_k, Set]$ is \textbf{formally smooth} if it satisfies the \emph{infinitesimal lifting property}: for every algebra $A$ and nilpotent [[ideal]] $I\subset A$ and morphism $Spec(A)\to Y$ the induced map \begin{displaymath} Hom_Y(Spec(A), X)\to Hom_Y(Spec(A/I),X) \end{displaymath} is surjective. \end{defn} This is due to ([[EGAIV]]${}_4$ 17.1.1) \begin{prop} \label{AbstractAndConcreteCommutativeFormallySmoothCoincidesOnObjects}\hypertarget{AbstractAndConcreteCommutativeFormallySmoothCoincidesOnObjects}{} An object $X \in [CAlg_k, Set]$ is formally smooth in the concrete sense of def. \ref{CFormalSmoothness} precisely if it is so in the abstract sense of def. \ref{AbstractFormallySmoothObjectDirect}. \end{prop} This appears as (\hyperlink{KontsevichRosenbergSpaces}{KontsevichRosenbergSpaces, 4.1}). \hypertarget{smoothness_versus_formal_smoothness}{}\paragraph*{{Smoothness versus formal smoothness}}\label{smoothness_versus_formal_smoothness} For a morphism $f:X\to Y$ of schemes, and $x$ a point of $X$, the following are equivalent (i) $f$ is a [[smooth morphism of schemes]] at $x$ (ii) $f$ is locally of finite presentation at $x$ and there is an open neighborhood $U\subset X$ of $x$ such that $f|_U: U\to Y$ is formally smooth (iii) $f$ is flat at $x$, locally of finite presentation at $x$ and the sheaf of [[Kähler differential]]s $\Omega_{X/Y}$ is locally free in a neighborhood of $x$ The relative dimension of $f$ at $x$ will equal the rank of the module of K\"a{}hler differentials. This is ([[EGAIV]]${}_4$ 17.5.2 and 17.15.15) \hypertarget{formally_smooth_scheme}{}\paragraph*{{Formally smooth scheme}}\label{formally_smooth_scheme} A [[scheme]] $S$, i.e. a scheme over the ground ring $k$, is a [[formally smooth scheme]] if the corresponding morphism $S \to Spec(k)$ is a formally smooth morphism. There is also an interpretation of formal smoothness via the formalism of [[Q-categories]]. \hypertarget{over_noncommutative_algebras}{}\subsubsection*{{Over noncommutative algebras}}\label{over_noncommutative_algebras} Let $k$ be a [[field]] and let $Alg_k$ be the category of [[associative algebra]]s over $k$ (not necessarily commutative). Let \begin{displaymath} Alg_k^{inf} : \bar A \to Alg_k \end{displaymath} be the [[Q-category]] of of $k$-algebras (whose objects are surjective $k$-algebra morphisms with nilpotent kernel). Notice that the [[presheaf topos]] \begin{displaymath} \mathbf{H} := [Alg_k, Set] \end{displaymath} is the context in which [[noncommutative scheme]]s live. Let $\mathbf{H}_{th} \to \mathbf{Q}$ be the over $Alg_k^{inf}$. \begin{prop} \label{NCFormalSmoothness}\hypertarget{NCFormalSmoothness}{} Let $f : R \to S$ be a morphism in $Alg_k$ such that $R$ is a [[separable algebra]]. Write $Spec f : Spec S \to Spec R$ for the corresponding morphism in $\mathbf{H} = [Alg_k, Set]$. This $Spec f$ is formally smooth in the sense of def. \ref{AbstractFormallySmoothMorphism} precisely if the $S \otimes_k S^{op}$-[[module]] \begin{displaymath} \Omega^1_{S|R} := ker ( R \otimes_k R \stackrel{mult}{\to} R \stackrel{f}{\to} S) \end{displaymath} is a [[projective object]] in $S \otimes_k S^{op}$[[Mod]]. \end{prop} In particular, setting $R = k$ we have that an object of the form $Spec S$ is formally smooth according to def. \ref{AbstractFormallySmoothObject} precisely if $\Omega^1(S|k)$ is projective. This is what in (\hyperlink{CuntzQuillen}{CuntzQuillen}) is called the condition for a [[quasi-free algebra]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \textbf{formally smooth morphism} and [[formally unramified morphism]] $\Rightarrow$ [[formally étale morphism]]. [[!include cohesion - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} The definition over commutative rings is in \begin{itemize}% \item [[EGAIV]]${}_4$, Publ. IH\'E{}S \textbf{32} (1967), p. 5-361, \href{http://www.numdam.org/item?id=PMIHES_1967__32__5_0}{numdam} \end{itemize} The definition over noncommutative algebras is in \begin{itemize}% \item [[J. Cuntz]], [[D. Quillen]], \emph{Algebra extensions and nonsingularity}, J. Amer. Math. Soc. \textbf{8} (1995), 251--289. \end{itemize} The general abstract definition and its relation to the standard definitions is in \begin{itemize}% \item [[Maxim Kontsevich]], [[Alexander Rosenberg]], \emph{Noncommutative spaces}, preprint MPI-2004-35 (\href{http://www.mpim-bonn.mpg.de/preprints/send?bid=2331}{ps}, \href{http://www.mpim-bonn.mpg.de/preprints/send?bid=2303}{dvi}) \end{itemize} See also \begin{itemize}% \item \href{http://mathoverflow.net/questions/22393/is-formal-smoothness-a-local-property}{MO:is-formal-smoothness-a-local-property} \item A. Ardizzoni, \emph{Separable functors and [[formal smoothness]]}, J. K-Theory 1 (2008), no. 3, 535--582, \href{http://arxiv.org/abs/math.QA/0407095}{math.QA/0407095}, \href{http://dx.doi.org/10.1017/is007011015jkt012}{doi}, \href{http://www.ams.org/mathscinet-getitem?mr=2009k:16069}{MR2009k:16069} \item T. Brzeziski, \emph{Notes on formal smoothness}, \emph{in}: Modules and Comodules (series \emph{Trends in Mathematics}). T Brzeziski, JL Gomez Pardo, I Shestakov, PF Smith (eds), Birkh\"a{}user, Basel, 2008, pp. 113-124 (\href{http://dx.doi.org/10.1007/978-3-7643-8742-6}{doi}, \href{http://arxiv.org/abs/0710.5527}{arXiv:0710.5527}) \item Guillermo Corti\~n{}as, \emph{The structure of smooth algebras in Kapranov's framework for noncommutative geometry}, J. of Algebra \textbf{281} (2004) 679-694, \href{http://arxiv.org/abs/math/0002177}{math.RA/0002177} \end{itemize} [[!redirects formal smoothness]] [[!redirects formally smooth]] [[!redirects formally smooth morphisms]] \end{document}