\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{framed manifold} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{manifolds_and_cobordisms}{}\paragraph*{{Manifolds and cobordisms}}\label{manifolds_and_cobordisms} [[!include manifolds and cobordisms - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{stable_homotopy_elements}{Stable homotopy elements}\dotfill \pageref*{stable_homotopy_elements} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{IntersectionPairing}{Relation to intersection pairing and Kervaire invariant}\dotfill \pageref*{IntersectionPairing} \linebreak \noindent\hyperlink{properties_2}{Properties}\dotfill \pageref*{properties_2} \linebreak \noindent\hyperlink{moduli_of_framings}{Moduli of framings}\dotfill \pageref*{moduli_of_framings} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{for_2manifolds}{For 2-manifolds}\dotfill \pageref*{for_2manifolds} \linebreak \noindent\hyperlink{for_3manifolds}{For 3-manifolds}\dotfill \pageref*{for_3manifolds} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In one sense of the term, a \emph{framing} of a [[manifold]] is a choice of trivialization of its [[tangent bundle]], hence a choice of [[section]] of the corresponding [[frame bundle]]. A manifold that admits a framing is also called a \textbf{parallelizable manifold}. A manifold equipped with a framing is also called a \textbf{parallelized manifold}. More generally, one means by a \emph{framing} not a trivialization of the tangent bundle itself, but \begin{itemize}% \item of the [[normal bundle]] if the manifold is understood [[embedding|embedded]] in some [[Cartesian space]] $\mathbb{R}^d$ \item of the \emph{[[stable tangent bundle]]}. \end{itemize} Accordingly, a \emph{framed cobordism} is a [[cobordism]] equipped with a framing on the underlying manifold. For $dim(X)$ the [[dimension]] of the manifold and $n \geq dim(X)$, then one also speaks of an \emph{$n$-framing} to mean a trivialization of the ``$n$-stabilized tangent bundle'' $T X \oplus \mathbb{R}^{n-dim(X)}$ (where the right [[direct sum|direct summand]] denotes the trivial real [[vector bundle]] of [[rank]] $n - dim(X)$). These $n$-framed manifolds appear in particular in the construction of the [[cobordism category]] of framed $n$-dimensional cobordisms. The [[cobordism hypothesis]] asserts essentially that the [[(∞,n)-category of cobordisms]] with $n$-framing is the [[free construction|free]] [[symmetric monoidal (∞,n)-category with duals]]. Beware that there is also the term ``[[2-framing]]'' due to (\hyperlink{Atiyah}{Atiyah}), which is related but different. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{prop} \label{}\hypertarget{}{} Every [[Lie group]] is a parallelizable manifold. \end{prop} \begin{proof} Every non-zero [[invariant vector field]] on the Lie group provides an everywhere non-vanishing section of the tangent bundle. \end{proof} The following is obvious: \begin{prop} \label{SpinManifoldAdmitsFraming}\hypertarget{SpinManifoldAdmitsFraming}{} Every 3-[[dimension|dimensional]] [[manifold]] with [[spin structure]] admits a framing. \end{prop} \begin{proof} That a 3-manifold $X$ has [[spin structure]] means that we have a [[reduction of the structure group]] of the tangent bundle to the [[spin group]], and hence the tangent bundle is classified by a map $X \to B Spin(3)$. But $Spin(3)$ has vanishing [[homotopy groups]] in degree $0 \leq k \leq 2$. Therefore its [[delooping]] [[classifying space]] $B Spin(3)$ has vanishing homotopy groups below degree 4 and hence every morphism out of a 3-dimensional manifold into it is homotopically constant. \end{proof} But in fact the following stronger statement is also true. \begin{prop} \label{EveryOrientable3ManifoldsIsParallelizable}\hypertarget{EveryOrientable3ManifoldsIsParallelizable}{} Every [[orientation|orientable]] 3-[[dimension|dimensional]] [[manifold]] admits a framing. \end{prop} \begin{proof} By the argument in the proof of prop. \ref{SpinManifoldAdmitsFraming}, the only possible obstruction is the [[second Stiefel-Whitney class]] $w_2$. By the discussion at \emph{[[Wu class]]}, this vanishes on an oriented manifold precisely if the second [[Wu class]] vanishes. This in turn is by definition defined to represent the [[Steenrod square]] under [[cup product]], and this vanishes on a 3-manifold by degree reasons. \end{proof} \begin{remark} \label{In4dFirstOrderGravity}\hypertarget{In4dFirstOrderGravity}{} Prop. \ref{EveryOrientable3ManifoldsIsParallelizable} has some impact in the context of the [[first order formulation of gravity]], where one is interested in [[vielbein]] fields on 4-dimensional [[spacetime manifolds]], and in particular in [[globally hyperbolic spacetimes]], which, as [[topological spaces]], are the [[Cartesian product]] of the [[real line]] (time) with a [[3-manifold]] (space). Prop. \ref{EveryOrientable3ManifoldsIsParallelizable} implies that already when that spatial 3-manifold is orientable, then the whole globally hyperbolic spacetime admits a framing. (See also at \emph{[[teleparallel gravity]]}.) \end{remark} \begin{theorem} \label{}\hypertarget{}{} The $n$-[[spheres]] that admit a framing are precisely only \begin{itemize}% \item the 0-sphere $S^0 = \ast \coprod \ast$, the unit [[real numbers]] \item the 1-sphere $S^1$, the [[circle]] underlying the [[circle group]] (the unit [[complex numbers]]); \item the 3-sphere $S^3$, underlying the [[special unitary group]] $SU(2)$, is isomorphic to the unit [[quaternions]]; \item the 7-sphere $S^7$, which underlies a [[Moufang loop]] internal to [[Diff]], namely the unit [[octonions]], \end{itemize} where the algebras appearing are precisely the four [[normed division algebras]]. \end{theorem} This is due to (\hyperlink{Adams58}{Adams 58}), proven with the [[Adams spectral sequence]]. \hypertarget{stable_homotopy_elements}{}\subsubsection*{{Stable homotopy elements}}\label{stable_homotopy_elements} Left invariant framings $\mathcal{L}$ on compact connected Lie groups $G$ with $dim(G)=k$ give rise to elements $[G,\mathcal{L}]$ in the stable homotopy group $\pi_k^s$ of spheres. One can restrict attention to semisimple Lie groups $G$ since this construction behaves well with respect to products, $G \to T\times G/T$ gives a framed diffeomorphism and $[S^1,\mathcal{L}] \in \pi_1^s$ is the generator. The following facts are assembled from (\href{https://doi.org/10.1016/0040-9383(82%2990013-1}{Ossa 1982}) and (\href{http://projecteuclid.org/euclid.jmsj/1468956166}{Minami 2016}) \begin{itemize}% \item For any \emph{semisimple} compact connected Lie group $G$, Ossa proved that $72[G,\mathcal{L}]=0$. In particular the only possible torsion is at the primes 2 and 3. \item The left invariant framings on $SO(n),Spin(n)$ and $SU(n)$ give the zero element for $n\geq 7$, those on $Sp(n)$ for $n\geq 4$, as do those on $F_4,E_6,E_7,E_8, SO(4),SO(6),SU(5),SU(6)$. (this means that the undetermined cases of rank 4 in Ossa's Table 1 are in fact all 0) \item The left invariant framings on the remaining groups ($SU(2)=Spin(3)=Sp(1),SU(3),SU(4)=Spin(6),Sp(2)=Spin(5),Sp(3),SO(3),SO(5)$ and $G_2$) represent known nonzero classes in $\pi_\ast^s$. \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{IntersectionPairing}{}\subsubsection*{{Relation to intersection pairing and Kervaire invariant}}\label{IntersectionPairing} On a framed manifold there is a canonical [[quadratic refinement]] of the [[intersection pairing]]. The associated invariant is the \emph{[[Kervaire invariant]]}. \hypertarget{properties_2}{}\subsection*{{Properties}}\label{properties_2} \hypertarget{moduli_of_framings}{}\subsubsection*{{Moduli of framings}}\label{moduli_of_framings} The [[homotopy type]] of the [[moduli space of framed manifolds|moduli space of framings]] on a fixed manifold is a disjoint union of subgroups of the oriented [[mapping class group]] which fix a given isotopy type of framings. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[normal framing]] \item [[2-framing]] \item [[framed elliptic curve]] \item [[moduli space of framed manifolds]] \item [[teleparallel gravity]] \end{itemize} Formalization in [[differential cohesion]] is discussed \href{http://ncatlab.org/nlab/show/differential+cohesive+%28infinity%2C1%29-topos#GLnTangentBundles}{there}. \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} Rieview in the context of the [[Kervaire invariant]] includes \begin{itemize}% \item [[Akhil Mathew]], \emph{The Kervaire invariant I} (\href{https://amathew.wordpress.com/2012/10/01/the-kervaire-invariant-i/#more-3888}{web}) \end{itemize} The theorem about the parallizablitiy of spheres is due to \begin{itemize}% \item [[John Adams]], \emph{On the Non-Existence of Elements of Hopf Invariant One} Bull. Amer. Math. Soc. 64, 279-282, 1958, Ann. Math. 72, 20-104, 1960. \end{itemize} Relation to existence of [[flat connections]] on the [[tangent bundle]] is discussed in \begin{itemize}% \item [[John Thorpe]], \emph{Parallelizablility and flat manifolds}, 1965 ([[ThorpeParallelizable.pdf:file]]) \end{itemize} \hypertarget{for_2manifolds}{}\subsubsection*{{For 2-manifolds}}\label{for_2manifolds} The [[moduli space of framed surfaces]] is discussed in \begin{itemize}% \item [[Oscar Randal-Williams]], \emph{Homology of the moduli spaces and mapping class groups of framed, r-Spin and Pin surfaces} (\href{http://arxiv.org/abs/1001.5366}{arXiv:1001.5366}) \end{itemize} \hypertarget{for_3manifolds}{}\subsubsection*{{For 3-manifolds}}\label{for_3manifolds} \begin{itemize}% \item [[Rob Kirby]], [[Paul Melvin]], \emph{Canonical framings for 3-manifolds}, Turkish Journal of Mathematics, volume 23, number 1,1999 ([[KirbyMelvon3Framings.pdf:file]]) \end{itemize} The relation to ``[[2-framings]]'' is duscussed in \begin{itemize}% \item [[Michael Atiyah]], \emph{On framings of 3-manifolds} (\href{http://www.maths.ed.ac.uk/~aar/papers/atiyahfr.pdf}{pdf}) \end{itemize} [[!redirects framed manifolds]] [[!redirects framed cobordism]] [[!redirects framed cobordisms]] [[!redirects parallelizable manifold]] [[!redirects parallelized manifold]] [[!redirects parallelizable manifolds]] [[!redirects parallelized manifolds]] [[!redirects framing]] [[!redirects framings]] [[!redirects parallelizable sphere]] [[!redirects parallelizable spheres]] [[!redirects parallelizable]] [[!redirects n-framing]] [[!redirects n-framings]] [[!redirects 1-framing]] [[!redirects 1-framings]] [[!redirects 3-framing]] [[!redirects 3-framings]] [[!redirects 4-framing]] [[!redirects 4-framings]] [[!redirects 5-framing]] [[!redirects 5-framings]] \end{document}