\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{free cocompletion} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{yoneda_lemma}{}\paragraph*{{Yoneda lemma}}\label{yoneda_lemma} [[!include Yoneda lemma - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{technical_details}{Technical details}\dotfill \pageref*{technical_details} \linebreak \noindent\hyperlink{proofs}{Proofs}\dotfill \pageref*{proofs} \linebreak \noindent\hyperlink{free_cocompletion_of_large_categories}{Free cocompletion of large categories}\dotfill \pageref*{free_cocompletion_of_large_categories} \linebreak \noindent\hyperlink{free_cocompletion_as_a_pseudomonad}{Free cocompletion as a pseudomonad}\dotfill \pageref*{free_cocompletion_as_a_pseudomonad} \linebreak \noindent\hyperlink{in_higher_category_theory}{In higher category theory}\dotfill \pageref*{in_higher_category_theory} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Passing from a [[category]] $C$ to its [[presheaf]] category $PSh(C) := [C^{op},Set]$ may be regarded as the operation of ``freely adjoining [[colimit]]s to $C$''. A slightly more precise version of this statement is that the [[Yoneda embedding]] \begin{displaymath} Y : C \hookrightarrow PSh(C) \end{displaymath} is the \textbf{free cocompletion} of $C$. The [[universal property]] of the [[Yoneda embedding]] is expressed in terms of the [[Yoneda extension]] of any [[functor]] $F : C \to D$ to a category $D$ with colimits. \hypertarget{technical_details}{}\subsection*{{Technical details}}\label{technical_details} The rough statement is that the [[Yoneda embedding]] \begin{displaymath} y_S: S \to Set^{S^{op}} \end{displaymath} of a [[small category]] $S$ into the category $Set^{S^{op}}$ of [[presheaf|presheaves]] on $S$ is universal among functors from $S$ into [[cocomplete category|cocomplete categories]]. Technically, this should be understood in an appropriate [[2-category|2-categorical]] sense: given a functor $F: S \to D$ where $D$ is (small-)cocomplete, there exists a unique (up to isomorphism) [[cocontinuous functor|cocontinuous]] extension \begin{displaymath} \hat{F}: Set^{S^{op}} \to D, \end{displaymath} called the [[Yoneda extension]], meaning that $\hat{F} y_S \cong F$ and $\hat{F}$ preserves small colimits. Put slightly differently: let $Cocomp$ denote the 2-category of cocomplete categories, cocontinuous functors, and natural transformations between them. Then for cocomplete $D$, the Yoneda embedding $y S: S \to Set^{S^{op}}$ induces by restriction a functor \begin{displaymath} res_{y S} D: Cocomp(Set^{S^{op}}, D) \to Cat(S, D) \end{displaymath} that is an [[equivalence of categories|equivalence]] for each $D$, one that is [[2-natural transformation|2-natural]] in $D$. In fact we show that the Yoneda extension $F \mapsto \hat{F}$ gives a functor $ext_{y S}D: Cat(S, D) \to Cocomp(Set^{S^{op}}, D)$ that is a left adjoint to $res_{y S}D$, giving a 2-natural adjoint equivalence. As a first step, we construct the desired extension $\hat{F}$ as a [[adjoint functor|left adjoint]] to the functor \begin{displaymath} D \to Set^{S^{op}}: d \mapsto \hom_D(F-, d). \end{displaymath} Being a left adjoint, $\hat{F}$ is cocontinuous. An explicit formula for the left adjoint is given by the [[weighted colimit]], [[end|coend]], or [[tensor product of functors]] formula \begin{displaymath} \hat{F}(X) = X \otimes_S F = \int^{s: S} X(s) \cdot F(s) \end{displaymath} where $S \cdot d$ is notation for [[power|copowering]] (or tensoring) an object $d$ of $D$ by a set $S$ (in this case, a coproduct of an $S$-indexed set of copies of $D$). This formula recurs frequently throughout this wiki; see also [[nerve]], [[Day convolution]]. This ``free cocompletion'' property generalizes to [[enriched category]] theory. If $V$ is complete, cocomplete, symmetric monoidal closed, and $S$ is a small $V$-enriched category, then the enriched presheaf category $V^{S^{op}}$ is a free $V$-cocompletion of $S$. The explicit meaning is analogous to the case where $V = Set$, where all ordinary category concepts are replaced by their $V$-enriched analogues; in particular, the notion of ``$V$-cocontinuous functor'' referes to preservation of enriched weighted colimits (not just ordinary conical colimits). If $C$ is not small, then its free cocompletion still exists, but it is not the category of all presheaves on $C$. Rather, it is the category of [[small presheaves]] on $C$, i.e. presheaves that are small colimits of representables. \hypertarget{proofs}{}\subsubsection*{{Proofs}}\label{proofs} \begin{prop} \label{FreeCocompletion}\hypertarget{FreeCocompletion}{} For $\mathcal{C}$ a [[small category]], its [[Yoneda embedding]] $\mathcal{C} \overset{y}{\hookrightarrow} [\mathcal{C}^{op}, Set]$ exhibits the [[category of presheaves]] $[\mathcal{C}^{op}, Set]$ as the \emph{free co-completion} of $\mathcal{C}$, in that it is a [[universal morphism]] (as in \href{adjoint+functor#UniversalArrow}{this Def.} but ``up to natural isomorphism'') into a [[cocomplete category]], in that: \begin{enumerate}% \item for $\mathcal{D}$ any [[cocomplete category]] [[category]]; \item for $F \;\colon\; \mathcal{C} \longrightarrow \mathcal{D}$ any [[functor]]; \end{enumerate} there is a [[functor]] $\widetilde F \;\colon\; [\mathcal{C}^{op}, Set] \longrightarrow \mathcal{D}$, unique up to [[natural isomorphism]], such that \begin{enumerate}% \item $\widetilde F$ [[preserved limit|preserves]] all [[colimits]], \item $\widetilde F$ [[extension|extends]] $F$ through the [[Yoneda embedding]], in that the following [[commuting diagram|diagram commutes]], up to [[natural isomorphism]]: \end{enumerate} \begin{displaymath} \itexarray{ && \mathcal{C} \\ & {}^{y}\swarrow &\swArrow& \searrow^{\mathrlap{F}} \\ \mathrlap{ \!\!\!\!\!\!\!\!\!\!\!\!\! [\mathcal{C}^{op}, Set] } && \underset{ \widetilde F }{\longrightarrow} && \mathcal{D} } \end{displaymath} \end{prop} \begin{proof} The last condition says that $\widetilde F$ is fixed on [[representable presheaves]], up to isomorphism, by \begin{equation} \widetilde F( y(c) ) \simeq F(c) \label{YonedaRestriction}\end{equation} and in fact [[natural isomorphism|naturally]] so: \begin{equation} \itexarray{ c_1&& \widetilde F( y(c_1) ) &\simeq& F(c_1) \\ {}^{\mathllap{f}}\big\downarrow && {}^{\mathllap{ F(y(f)) }}\big\downarrow && \big\downarrow^{\mathrlap{ F(f) }} \\ c_2 && \widetilde F (y(c_2)) &\simeq& F(c_2) } \label{FunctorialYonedaRestriction}\end{equation} But the [[co-Yoneda lemma]] expresses every [[presheaf]] $\mathbf{X} \in [\mathcal{C}^{op}, Set]$ as a [[colimit]] of [[representable presheaves]] \begin{displaymath} \mathbf{X} \;\simeq\; \int^{c \in \mathcal{C}} y(c) \cdot \mathbf{X}(c) \,. \end{displaymath} Since $\tilde F$ is required to preserve any colimit and hence these particular colimits, \eqref{YonedaRestriction} implies that $\widetilde F$ is fixed to act, up to isomorphism, as \begin{displaymath} \begin{aligned} \widetilde F(\mathbf{X}) & = \widetilde F \left( \int^{c \in \mathcal{C}} y(c) \cdot \mathbf{X}(c) \right) & \coloneqq \int^{c \in \mathcal{C}} F(c) \cdot \mathbf{X}(c) \;\;\;\;\in \mathcal{D} \end{aligned} \end{displaymath} (where the colimit (a [[coend]]) on the right is computed in $\mathcal{D}$!). \end{proof} \hypertarget{free_cocompletion_of_large_categories}{}\subsection*{{Free cocompletion of large categories}}\label{free_cocompletion_of_large_categories} In general, given a large category $\mathcal{A}$, we can define a locally small category of \emph{small presheaves} on $\mathcal{A}$ as the full subcategory of the functor category $Fun(\mathcal{A}^{\mathrm{op}},\operatorname{Set})$ spanned by those functors $F:\mathcal{A}^{\mathrm{op}} \to \operatorname{Set}$ such that there exists a functor $\gamma:\mathcal{C} \to \mathcal{A}$ with $\mathcal{C}$ small and a presheaf $F': \mathcal{C}^{\mathrm{op}}\to \operatorname{Set}$ such that \begin{displaymath} F=\operatorname{Lan}_{\gamma} F'. \end{displaymath} In the case where $\mathcal{A}^{\mathrm{op}}$ is [[locally presentable]], the category of small presheaves on $\mathcal{A}$ is equivalent to the category of [[accessible functors]] $\mathcal{A}^{\mathrm{op}}\to \operatorname{Set}$. In this situation, the category of small functors has many nice properties and is often said to be \emph{almost a topos}. In particular, under this assumption, the category of small presheaves is complete, cocomplete, and Cartesian-closed. See \hyperlink{DayLack}{Day-Lack} for more details. \hypertarget{free_cocompletion_as_a_pseudomonad}{}\subsection*{{Free cocompletion as a pseudomonad}}\label{free_cocompletion_as_a_pseudomonad} [[David Corfield]]: So is this `free cocompletion' part of an adjunction between the category of categories and the category of cocomplete categories (modulo size worries?). Or should we think of it as part of a [[pseudoadjunction]] between \emph{2-categories}? (I would start a page on that, but how are naming conventions going in this area?) [[John Baez]]: Equations between functors tends to hold only up to natural isomorphism. So, your first guess should not be that there's an \emph{adjunction} between the \emph{categories} $Cat$ and $CocompleteCat$, but rather, a \emph{pseudoadjunction} between the \emph{2-categories} $Cat$ and $CocompleteCat$. If this were true, what would it mean? It would mean that there's a forgetful 2-functor: \begin{displaymath} U: CocompleteCat \to Cat \end{displaymath} together with a `free cocompletion' 2-functor, which right now we've been calling `hat': \begin{displaymath} F: Cat \to CocompleteCat \end{displaymath} \begin{displaymath} F: C \mapsto \widehat{C} = Set^{C^{op}} \end{displaymath} And, it would mean there's an equivalence of categories \begin{displaymath} hom_{CocompleteCat} (F C, D) \simeq hom_{Cat} (C, U D) \end{displaymath} for every $C \in Cat$, $D \in CocompleteCat$. And finally, it would also be saying that this equivalence is [[pseudonatural transformation|pseudonatural]] as a function of $C$ and $D$. If we have a pseudonatural equivalence of categories \begin{displaymath} hom_{CocompleteCat} (F C, D) \simeq hom_{Cat} (C, U D) \end{displaymath} instead of a natural isomorphism of sets, then we say we have a `pseudoadjunction' instead of an adjunction. A pseudoadjunction is the right generalization of adjunction when we go to 2-categories; if we were feeling in a modern mood we might just say `adjunction' and expect people to know we meant `pseudo'. Naively, it seems we \emph{do} have such a pseudoadjunction, at least \emph{modulo size issues}---which unfortunately is sort of like saying ``modulo truth''! The problem is that if Cat is the 2-category of [[small category|small]] categories then to define the free cocompletion functor \begin{displaymath} F : Cat \to CocompleteCat \end{displaymath} we need $CocompleteCat$ to be the 2-category of [[large category|large]] categories. But if $CocompleteCat$ is the 2-category of [[large category|large]] categories then to define \begin{displaymath} U: CocompleteCat \to Cat \end{displaymath} we need $Cat$ to be the 2-category of large categories! So, instead of an honest pseudoadjunction that bounces us back and forth between two 2-categories, the size keeps ratcheting up each time we make a round trip! In particular, if we try to define a [[pseudomonad]] \begin{displaymath} U F : Cat \to Cat \end{displaymath} we're stuck: the `$Cat$' at right contains larger categories than the one at left. In \href{http://www.lacim.uqam.ca/~gambino/species.pdf}{their work on species}, Fiore, Gambino, Hyland and Winskel had to confront this issue. In one draft of this paper they had a very artful and sophisticated device for dealing with this size problem. In the latest draft they seem to have sidestepped it entirely: you'll see they discuss the `free symmetric monoidal category on a category' pseudomonad, but never the `free cocomplete category on a category' pseudomonad, even though they \emph{do} use the $\widehat{C}$ construction all over the place. Somehow they've managed to avoid the need to consider this construction as a pseudomonad! \hypertarget{in_higher_category_theory}{}\subsection*{{In higher category theory}}\label{in_higher_category_theory} One can ask for the notion of free cocompletion in the wider context of [[higher category theory]]. \begin{itemize}% \item for [[(∞,1)-category]] theory there is [[free (∞,1)-cocompletion]] . \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Brian Day]], [[Steve Lack]], \emph{Limits of small functors} (\href{https://arxiv.org/abs/math/0610439}{web}) \end{itemize} This reference might also give helpful clues: \begin{itemize}% \item [[Daniel Dugger]], \emph{Sheaves and Homotopy Theory} (\href{http://www.uoregon.edu/~ddugger/cech.html}{web}, \href{http://ncatlab.org/nlab/files/cech.pdf}{pdf}) \end{itemize} A pedagogical explanation of the universal property of the [[Yoneda embedding]] is given starting on page 7. On page 8 there's an explanation with lots of pictures how a presheaf is an ``instruction for how to build a colimit''. Then on p. 9 the universal morphism that we are looking for here is identified as the one that ``takes the instructions for building a colimit and actually \emph{builds} it''. (This text, by the way, contains various other gems. A pity that it is left unfinished.) [[!redirects free cocompletions]] [[!redirects free colimit completion]] [[!redirects free colimit completions]] [[!redirects free co-completion]] [[!redirects free co-completions]] \end{document}