\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{free diagram} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{Exposition}{Exposition}\dotfill \pageref*{Exposition} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{free diagram} in a [[category]] $\mathcal{C}$ is a particularly simple special case of the general concept of a \emph{[[diagram]]} $X_\bullet \;\colon\; \mathcal{I} \to \mathcal{C}$, namely the case where the shape $\mathcal{I}$ of the diagram is a [[free category]]. Many important types of [[limits]] and [[colimits]] are over free diagrams, for instance [[products]]/[[coproducts]], [[equalizers]]/[[coequalizers]], [[pullbacks]]/[[pushouts]], [[sequential limits]]/[[sequential colimits]]. Due to the simplicity of the concept of free diagrams, these types of [[limits]] and [[colimits]] may be discussed in a very low-brow way, without even making the concept of \emph{[[category]]} and \emph{[[functor]]} explicit. For this see the \emph{\hyperlink{Exposition}{Exposition}} below. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Recall that \begin{defn} \label{Diagram}\hypertarget{Diagram}{} \textbf{([[diagram]])} For $\mathcal{C}$ a [[category]], then a \emph{[[diagram]] in $\mathcal{C}$} is \begin{enumerate}% \item a [[small category]] $\mathcal{I}$ , the \emph{shape} of the diagram; \item a [[functor]] $X_\bullet \;\colon\; \mathcal{I} \to \mathcal{C}$. \end{enumerate} \end{defn} \begin{defn} \label{FreeCategory}\hypertarget{FreeCategory}{} \textbf{([[free category]])} There is a [[free-forgetful adjunction]] \begin{displaymath} Cat \underoverset {\underset{Underlying}{\longrightarrow}} {\overset{Free}{\longleftarrow}} {\bot} DirGraph \end{displaymath} between the [[1-categories]] of [[categories]] and that of [[directed graphs]]. A \emph{[[free category]]} is one in the [[image]] of this [[left adjoint]] functor $Free \colon DirGraph \to Cat$ (sometimes called a ``[[path category]]''). \end{defn} \begin{defn} \label{FreeDiagram}\hypertarget{FreeDiagram}{} \textbf{(free diagram)} A \emph{[[free diagram]]} in a [[category]] $\mathcal{C}$ is a [[diagram]] in $\mathcal{C}$ (def. \ref{Diagram}) whose shape is a [[free category]] (def. \ref{FreeCategory}). In other words, a free diagram in $\mathcal{C}$ is \begin{enumerate}% \item a [[directed graph]] $I$; \item a [[functor]] of the form $X_\bullet \;\colon\; Free(I) \to \mathcal{C}$. \end{enumerate} \end{defn} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{example} \label{}\hypertarget{}{} Types of free diagrams that are commonly encountered in practice, as well as the names of the [[limits]]/[[colimits]] over them are shown in the following table [[!include free diagrams -- table]] \end{example} \hypertarget{Exposition}{}\subsection*{{Exposition}}\label{Exposition} We give an exposition of free diagrams, and their [[cones]] and [[limits]], intentionally avoiding abstract category-theoretic language, expressing everything just in components. See also at \emph{[[limits and colimits by example]]}. For concreteness, we speak only of diagrams of [[sets]] and of [[topological spaces]] in the following: \begin{defn} \label{Diagram}\hypertarget{Diagram}{} \textbf{([[free diagram]] of [[sets]]/[[topological spaces]])} A \emph{[[free diagram]]} $X_\bullet$ of [[sets]] or of [[topological spaces]] is \begin{enumerate}% \item a [[set]] $\{ X_i \}_{i \in I}$ of [[sets]] or of [[topological spaces]], respectively; \item for every [[pair]] $(i,j) \in I \times I$ of labels, a [[set]] $\{ X_i \overset{ f_\alpha }{\longrightarrow} X_j\}_{\alpha \in I_{i,j}}$ of [[functions]] of of [[continuous functions]], respectively, between these. \end{enumerate} \end{defn} \begin{example} \label{DiscreteDiagram}\hypertarget{DiscreteDiagram}{} \textbf{([[discrete category|discrete]] [[diagram]] and [[empty diagram]])} Let $I$ be any [[set]], and for each $(i,j) \in I \times I$ let $I_{i,j} = \emptyset$ be the [[empty set]]. The corresponding [[free diagrams]] (def. \ref{Diagram}) are simply a set of sets/topological spaces with no specified (continuous) functions between them. This is called a \emph{[[discrete category|discrete]] [[diagram]]}. For example for $I = \{1,2,3\}$ the set with 3-elements, then such a diagram looks like this: \begin{displaymath} X_1 \phantom{AAA} X_2 \phantom{AAA} X_3 \,. \end{displaymath} Notice that here the index set may be [[empty set]], $I = \emptyset$, in which case the corresponding diagram consists of no data. This is also called the \emph{[[empty diagram]]}. \end{example} \begin{defn} \label{ParallelMorphisms}\hypertarget{ParallelMorphisms}{} \textbf{([[parallel morphisms]] [[diagram]])} Let $I = \{a, b\}$ be the [[set]] with two elements, and consider the sets \begin{displaymath} I_{i,j} \;\coloneqq\; \left\{ \itexarray{ \{ 1,2 \} & \vert & (i = a) \,\text{and}\, (j = b) \\ \emptyset & \vert & \text{otherwise} } \right\} \,. \end{displaymath} The corresponding [[free diagrams]] (def. \ref{Diagram}) are called \emph{[[pairs of parallel morphisms]]}. They may be depicted like so: \begin{displaymath} X_a \underoverset {\underset{f_2}{\longrightarrow}} {\overset{f_1}{\longrightarrow}} {\phantom{AAAAA}} X_b \,. \end{displaymath} \end{defn} \begin{example} \label{SpanDiagram}\hypertarget{SpanDiagram}{} \textbf{([[span]] and [[cospan]] [[diagram]])} Let $I = \{a,b,c\}$ the set with three elements, and set \begin{displaymath} I_{i ,j} = \left\{ \itexarray{ \{f_1\} & \vert \, (i = c) \,\text{and}\, (j = a) \\ \{f_2\} & \vert \, (i = c) \,\text{and}\, (j = b) \\ \emptyset & \vert \, \text{otherwise} } \right. \end{displaymath} The corresponding [[free diagrams]] (def. \ref{Diagram}) look like so: \begin{displaymath} \itexarray{ && X_c \\ & {}^{\mathllap{f_1}}\swarrow && \searrow^{\mathrlap{f_2}} \\ X_a && && X_b } \,. \end{displaymath} These are called \emph{[[span]] [[diagrams]]}. Similary, there is the \emph{[[cospan]]} diagram of the form \begin{displaymath} \itexarray{ && X_c \\ & {}^{\mathllap{f_1}}\nearrow && \nwarrow^{\mathrlap{f_2}} \\ X_a && && X_b } \,. \end{displaymath} \end{example} \begin{example} \label{}\hypertarget{}{} \textbf{([[tower]] [[diagram]])} Let $I = \mathbb{N}$ be the set of [[natural numbers]] and consider \begin{displaymath} I_{i,j} \;\coloneqq\; \left\{ \itexarray{ \{f_{i,j}\} & \vert & i \leq j \\ \emptyset & \vert & \text{otherwise} } \right. \end{displaymath} The corresponding [[free diagrams]] (def. \ref{Diagram}) are called \emph{[[tower]] [[diagrams]]}. They look as follows: \begin{displaymath} X_0 \overset{\phantom{A}f_{0,1} \phantom{A} }{\longrightarrow} X_1 \overset{\phantom{A} f_{1,2} \phantom{A} }{\longrightarrow} X_2 \overset{\phantom{A} f_{2,3} \phantom{A} }{\longrightarrow} X_3 \overset{}{\longrightarrow} \cdots \,. \end{displaymath} Similarly there are co-tower diagram \begin{displaymath} X_0 \overset{\phantom{A} f_{0,1} \phantom{A} }{\longleftarrow} X_1 \overset{\phantom{A} f_{1,2} \phantom{A}}{\longleftarrow} X_2 \overset{\phantom{A} f_{2,3} \phantom{A}}{\longleftarrow} X_3 \overset{}{\longleftarrow} \cdots \,. \end{displaymath} \end{example} $\,$ \begin{defn} \label{Cone}\hypertarget{Cone}{} \textbf{([[cone]] over a [[free diagram]])} Consider a [[free diagram]] of sets or of topological spaces (def. \ref{Diagram}) \begin{displaymath} X_\bullet \,=\, \left\{ X_i \overset{f_\alpha}{\longrightarrow} X_j \right\}_{i,j \in I, \alpha \in I_{i,j}} \,. \end{displaymath} Then \begin{enumerate}% \item a \emph{[[cone]]} over this diagram is \begin{enumerate}% \item a [[set]] or [[topological space]] $\tilde X$ (called the \emph{tip} of the cone); \item for each $i \in I$ a [[function]] or [[continuous function]] $\tilde X \overset{p_i}{\longrightarrow} X_i$ \end{enumerate} such that \begin{itemize}% \item for all $(i,j) \in I \times I$ and all $\alpha \in I_{i,j}$ then the condition \begin{displaymath} f_{\alpha} \circ p_i = p_j \end{displaymath} holds, which we depict as follows: \begin{displaymath} \itexarray{ && \tilde X \\ & {}^{\mathllap{p_i}}\swarrow && \searrow^{\mathrlap{p_j}} \\ X_i && \underset{f_\alpha}{\longrightarrow} && X_j } \end{displaymath} \end{itemize} \item a \emph{[[co-cone]]} over this diagram is \begin{enumerate}% \item a set or topological space $\tilde X$ (called the \emph{tip} of the co-cone); \item for each $i \in I$ a function or continuous function $q_i \colon X_i \longrightarrow \tilde X$; \end{enumerate} such that \begin{itemize}% \item for all $(i,j) \in I \times I$ and all $\alpha \in I_{i,j}$ then the condition \begin{displaymath} q_j \circ f_{\alpha} = q_i \end{displaymath} holds, which we depict as follows: \begin{displaymath} \itexarray{ X_i && \overset{f_\alpha}{\longrightarrow} && X_j \\ & {}_{\mathllap{q_i}}\searrow && \swarrow_{\mathrlap{q_j}} \\ && \tilde X } \,. \end{displaymath} \end{itemize} \end{enumerate} \end{defn} \begin{example} \label{ConeIncarnationOfSolutionsToEquations}\hypertarget{ConeIncarnationOfSolutionsToEquations}{} \textbf{([[solutions]] to [[equations]] are [[cones]])} Let $f,g \colon \mathbb{R} \to \mathbb{R}$ be two [[functions]] from the [[real numbers]] to themselves, and consider the corresponding [[parallel morphism]] [[diagram]] of sets (example \ref{ParallelMorphisms}): \begin{displaymath} \mathbb{R} \underoverset {\underset{f_2}{\longrightarrow}} {\overset{f_1}{\longrightarrow}} {\phantom{AAAAA}} \mathbb{R} \,. \end{displaymath} Then a [[cone]] (def. \ref{Cone}) over this free diagram with tip the [[singleton]] set $\ast$ is a \emph{[[solution]]} to the [[equation]] $f(x) = g(x)$ \begin{displaymath} \itexarray{ && \ast \\ & {}^{\mathllap{const_x}}\swarrow && \searrow^{\mathrlap{const_y}} \\ \mathbb{R} && \underoverset {\underset{f_2}{\longrightarrow}} {\overset{f_1}{\longrightarrow}} {\phantom{AAAAA}} && \mathbb{R} } \,. \end{displaymath} Namely the components of the cone are two functions of the form \begin{displaymath} cont_x, const_y \;\colon\; \ast \to \mathbb{R} \end{displaymath} hence equivalently two [[real numbers]], and the conditions on these are \begin{displaymath} f_1 \circ const_x = const_y \phantom{AAAA} f_2 \circ const_x = const_y \,. \end{displaymath} \end{example} \begin{defn} \label{LimitingCone}\hypertarget{LimitingCone}{} \textbf{([[limit|limiting cone]] over a [[diagram]])} Consider a [[free diagram]] of sets or of topological spaces (def. \ref{Diagram}): \begin{displaymath} \left\{ X_i \overset{f_\alpha}{\longrightarrow} X_j \right\}_{i,j \in I, \alpha \in I_{i,j}} \,. \end{displaymath} Then \begin{enumerate}% \item its \emph{[[limit|limiting cone]]} (or just \emph{[[limit]]} for short, also ``[[inverse limit]]'', for historical reasons) is [[generalized the|the]] [[cone]] \begin{displaymath} \left\{ \itexarray{ && \underset{\longleftarrow}{\lim}_k X_k \\ & {}^{\mathllap{p_i}}\swarrow && \searrow^{\mathrlap{p_j}} \\ X_i && \underset{f_\alpha}{\longrightarrow} && X_j } \right\} \end{displaymath} over this diagram (def. \ref{Cone}) which is \emph{[[universal property|universal]]} among all possible cones, in that for \begin{displaymath} \left\{ \itexarray{ && \tilde X \\ & {}^{\mathllap{p'_i}}\swarrow && \searrow^{\mathrlap{p'_j}} \\ X_i && \underset{f_\alpha}{\longrightarrow} && X_j } \right\} \end{displaymath} any other [[cone]], then there is a unique function or continuous function, respectively \begin{displaymath} \phi \;\colon\; \tilde X \overset{}{\longrightarrow} \underset{\longrightarrow}{\lim}_i X_i \end{displaymath} that factors the given cone through the limiting cone, in that for all $i \in I$ then \begin{displaymath} p'_i = p_i \circ \phi \end{displaymath} which we depict as follows: \begin{displaymath} \itexarray{ \tilde X \\ {}^{\mathllap{ \exists !\, \phi}}\downarrow & \searrow^{\mathrlap{p'_i}} \\ \underset{\longrightarrow}{\lim}_i X_i &\underset{p_i}{\longrightarrow}& X_i } \end{displaymath} \item its \emph{[[colimit|colimiting cocone]]} (or just \emph{[[colimit]]} for short, also ``[[direct limit]]'', for historical reasons) is [[generalized the|the]] [[cocone]] \begin{displaymath} \left\{ \itexarray{ X_i && \overset{f_\alpha}{\longrightarrow} && X_j \\ & {}^{\mathllap{q_i}}\searrow && \swarrow^{\mathrlap{q_j}} \\ \\ && \underset{\longrightarrow}{\lim}_i X_i } \right\} \end{displaymath} under this diagram (def. \ref{Cone}) which is \emph{[[universal property|universal]]} among all possible co-cones, in that it has the property that for \begin{displaymath} \left\{ \itexarray{ X_i && \overset{f_\alpha}{\longrightarrow} && X_j \\ & {}^{\mathllap{q'_i}}\searrow && \swarrow_{\mathrlap{q'_j}} \\ && \tilde X } \right\} \end{displaymath} any other [[cocone]], then there is a unique function or continuous function, respectively \begin{displaymath} \phi \;\colon\; \underset{\longrightarrow}{\lim}_i X_i \overset{}{\longrightarrow} \tilde X \end{displaymath} that factors the given co-cone through the co-limiting cocone, in that for all $i \in I$ then \begin{displaymath} q'_i = \phi \circ q_i \end{displaymath} which we depict as follows: \begin{displaymath} \itexarray{ X_i &\overset{q_i}{\longrightarrow}& \underset{\longrightarrow}{\lim}_i X_i \\ & {}_{q'_i}\searrow & \downarrow^{\mathrlap{\exists ! \phi}} \\ && \tilde X } \end{displaymath} \end{enumerate} \end{defn} $\,$ All the limits and colimits over the free diagram in the above list of examples have special names: [[!include free diagrams -- table]] \begin{example} \label{TerminalInitialObject}\hypertarget{TerminalInitialObject}{} \textbf{([[initial object]] and [[terminal object]])} Consider the [[empty diagram]] (def. \ref{DiscreteDiagram}). \begin{enumerate}% \item A [[cone]] over the empty diagram is just an object $X$, with no further structure or condition. The [[universal property]] of the [[limit]] ``ast$'' over the empty diagram is hence that for every object$X$, there is a unique map of the form$X $\backslash$to $\backslash$ast$. Such an object$$\backslash$ast\$ is called a \emph{[[terminal object]]}. \item A [[co.cone]] over the empty diagram is just an object $X$, with no further structure or condition. The [[universal property]] of the [[colimit]] ``$'' over the empty diagram is hence that for every object$X$, there is a unique map of the form$0 $\backslash$to X$. Such an object$$\backslash$ast\$ is called a \emph{[[initial object]]}. \end{enumerate} \end{example} \begin{example} \label{CoProduct}\hypertarget{CoProduct}{} \textbf{([[Cartesian product]] and [[coproduct]])} Let $\{X_i\}_{i \in I}$ be a [[discrete category|discrete]] [[diagram]] (example \ref{DiscreteDiagram}), i.e. just a set of objects. \begin{enumerate}% \item The [[limit]] over this diagram is called the \emph{[[Cartesian product]]}, denoted $\underset{i \in I}{\prod} X_i$; \item The [[colimit]] over this diagram is called the \emph{[[coproducts]]}, denoted $\underset{i \in I}{\coprod} X_i$. \end{enumerate} \end{example} \begin{example} \label{Equalizer}\hypertarget{Equalizer}{} \textbf{([[equalizer]])} Let \begin{displaymath} X_1 \underoverset {\underset{\phantom{AA}f_2\phantom{AA}}{\longrightarrow}} {\overset{\phantom{AA}f_1\phantom{AA}}{\longrightarrow}} {} X_2 \end{displaymath} be a [[free diagram]] of the shape ``[[pair of parallel morphisms]]'' (example \ref{ParallelMorphisms}). A [[limit]] over this diagram according to def. \ref{LimitingCone} is also called the \emph{[[equalizer]]} of the maps $f_1$ and $f_2$. This is a set or topological space $eq(f_1,f_2)$ equipped with a map $eq(f_1,f_2) \overset{p_1}{\longrightarrow} X_1$, so that $f_1 \circ p_1 = f_2 \circ p_1$ and such that if $Y \to X_1$ is any other map with this property \begin{displaymath} \itexarray{ && Y \\ && \downarrow & \searrow \\ eq(f_1,f_2) &\overset{p_1}{\longrightarrow}& X_1 & \underoverset {\underset{\phantom{AA}f_2\phantom{AA}}{\longrightarrow}} {\overset{\phantom{AA}f_1\phantom{AA}}{\longrightarrow}} {} & X_2 } \end{displaymath} then there is a unique factorization through the equalizer: \begin{displaymath} \itexarray{ && Y \\ &{}^{\mathllap{\exists !}}\swarrow& \downarrow & \searrow \\ eq(f_1,f_2) &\overset{p_1}{\longrightarrow}& X_1 & \underoverset {\underset{f_2}{\longrightarrow}} {\overset{f_1}{\longrightarrow}} {} & X_2 } \,. \end{displaymath} In example \ref{ConeIncarnationOfSolutionsToEquations} we have seen that a cone over such a pair of parallel morphisms is a \emph{[[solution]]} to the equation $f_1(x) = f_2(x)$. The equalizer above is the \emph{space of all solutions} of this equation. \end{example} \begin{example} \label{Pushout}\hypertarget{Pushout}{} \textbf{([[pullback]]/[[fiber product]] and [[coproduct]])} Consider a [[cospan]] [[diagram]] (example \ref{SpanDiagram}) \begin{displaymath} \itexarray{ && Y \\ && \downarrow^{\mathrlap{f}} \\ X &\underset{g}{\longrightarrow}& Z } \,. \end{displaymath} The [[limit]] over this diagram is also called the \emph{[[fiber product]]} of $X$ with $Y$ over $Z$, and denoted $X \underset{Z}{\times}Y$. Thought of as equipped with the projection map to $X$, this is also called the \emph{[[pullback]]} of $f$ along $g$ \begin{displaymath} \itexarray{ X \underset{X}{\times} Z &\longrightarrow& Y \\ \downarrow &(pb)& \downarrow^{\mathrlap{f}} \\ X &\underset{g}{\longrightarrow}& Z } \,. \end{displaymath} [[formal duality|Dually]], consider a [[span]] [[diagram]] (example \ref{SpanDiagram}) \begin{displaymath} \itexarray{ Z &\overset{g}{\longrightarrow}& Y \\ {}^{\mathllap{f}}\downarrow \\ X } \end{displaymath} The [[colimit]] over this diagram is also called the [[pushout]] of $f$ along $g$, denoted $X \underset{Z}{\sqcup}Y$: \begin{displaymath} \itexarray{ Z &\overset{g}{\longrightarrow}& Y \\ {}^{\mathllap{f}}\downarrow &(po)& \downarrow \\ X &\longrightarrow& X \underset{Z}{\sqcup} Y } \end{displaymath} \end{example} $\,$ Here is a more explicit description of the limiting cone over a diagram of sets: \begin{prop} \label{SetLimits}\hypertarget{SetLimits}{} \textbf{(\href{limits+and+colimits+by+example#limcoliminset}{limits and colimits of sets})} Let $\left\{ X_i \overset{f_\alpha}{\longrightarrow} X_j \right\}_{i,j \in I, \alpha \in I_{i,j}}$ be a [[free diagram]] of sets (def. \ref{Diagram}). Then \begin{enumerate}% \item its [[limit|limit cone]] (def. \ref{LimitingCone}) is given by the following [[subset]] of the [[Cartesian product]] $\underset{i \in I}{\prod} X_i$ of all the [[sets]] $X_i$ appearing in the diagram \begin{displaymath} \underset{\longleftarrow}{\lim}_i X_i \,\overset{\phantom{AAA}}{\hookrightarrow}\, \underset{i \in I}{\prod} X_i \end{displaymath} on those [[tuples]] of elements which match the [[graphs]] of the functions appearing in the diagram: \begin{displaymath} \underset{\longleftarrow}{\lim}_{i} X_i \;\simeq\; \left\{ (x_i)_{i \in I} \,\vert\, \underset{ {i,j \in I} \atop { \alpha \in I_{i,j} } }{\forall} \left( f_{\alpha}(x_i) = x_j \right) \right\} \end{displaymath} and the projection functions are $p_i \colon (x_j)_{j \in I} \mapsto x_i$. \item its [[colimit|colimiting co-cone]] (def. \ref{LimitingCone}) is given by the [[quotient set]] of the [[disjoint union]] $\underset{i \in I}{\sqcup} X_i$ of all the [[sets]] $X_i$ appearing in the diagram \begin{displaymath} \underset{i \in I}{\sqcup} X_i \,\overset{\phantom{AAA}}{\longrightarrow}\, \underset{\longrightarrow}{\lim}_{i \in I} X_i \end{displaymath} with respect to the [[equivalence relation]] which is generated from the [[graphs]] of the functions in the diagram: \begin{displaymath} \underset{\longrightarrow}{\lim}_i X_i \;\simeq\; \left( \underset{i \in I}{\sqcup} X_i \right)/ \left( (x \sim x') \Leftrightarrow \left( \underset{ {i,j \in I} \atop { \alpha \in I_{i,j} } }{\exists} \left( f_\alpha(x) = x' \right) \right) \right) \end{displaymath} and the injection functions are the evident maps to [[equivalence classes]]: \begin{displaymath} q_i \;\colon\; x_i \mapsto [x_i] \,. \end{displaymath} \end{enumerate} \end{prop} \begin{proof} We dicuss the proof of the first case. The second is directly analogous. First observe that indeed, by consturction, the projection maps $p_i$ as given do make a cone over the free diagram, by the very nature of the relation that is imposed on the tuples: \begin{displaymath} \itexarray{ && \left\{ (x_k)_{k \in I} \,\vert\, \underset{ {i,j \in I} \atop { \alpha \in I_{i,j} } }{\forall} \left( f_{\alpha}(x_i) = x_j \right) \right\} \\ & {}^{\mathllap{p_i}}\swarrow && \searrow^{\mathrlap{p_j}} \\ X_i && \underset{f_\alpha}{\longrightarrow} && X_j } \,. \end{displaymath} We need to show that this is universal, in that any other cone over the free diagram factors universally through it. First consider the case that the tip of a give cone is a singleton: \begin{displaymath} \itexarray{ && \ast \\ & {}^{\mathllap{p'_i}}\swarrow && \searrow^{\mathrlap{p'_j}} \\ X_i && \underset{f_\alpha}{\longrightarrow} && X_j } \,. \end{displaymath} This is hence equivalently for each $i \in I$ an element $x'_i \in X_i$, such that for all $i, j \in I$ and $\alpha \in I_{i,j}$ then $f_\alpha(x'_i) = x'_j$. But this is precisely the relation used in the construction of the limit above and hence there is a unique map \begin{displaymath} \ast \longrightarrow \left\{ (x_k)_{k \in I} \,\vert\, \underset{ {i,j \in I} \atop { \alpha \in I_{i,j} } }{\forall} \left( f_{\alpha}(x_i) = x_j \right) \right\} \end{displaymath} such that for all $i \in I$ we have \begin{displaymath} \itexarray{ \ast \\ \downarrow & \searrow^{\mathrlap{p'_i}} \\ \left\{ (x_k)_{k \in I} \,\vert\, \underset{ {i,j \in I} \atop { \alpha \in I_{i,j} } }{\forall} \left( f_{\alpha}(x_i) = x_j \right) \right\} &\underset{p_i}{\longrightarrow}& X_i } \end{displaymath} namely that map is the one that picks the element $(x'_i)_{i \in I}$. This shows that every cone with tip a singleton factors uniquely through the claimed limiting cone. But then for a cone with tip an arbitrary set $Y$, this same argument applies to all the single elements of $Y$. \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[diagram]] \item [[commuting diagram]] \item [[internal diagram]] \end{itemize} [[!redirects free diagrams]] \end{document}