\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{free field theory} \begin{quote}% This entry is about the concept in [[physics]]. For the concept in [[algebra]] see at \emph{[[free field]]}. \end{quote} \vspace{.5em} \hrule \vspace{.5em} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{fields_and_quanta}{}\paragraph*{{Fields and quanta}}\label{fields_and_quanta} [[!include fields and quanta - table]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{in_covariant_phase_space_geometrymultisymplectic_geometry}{In covariant phase space geometry/multisymplectic geometry}\dotfill \pageref*{in_covariant_phase_space_geometrymultisymplectic_geometry} \linebreak \noindent\hyperlink{in_bvformalism}{In BV-formalism}\dotfill \pageref*{in_bvformalism} \linebreak \noindent\hyperlink{kinematics_and_dynamics}{Kinematics and dynamics}\dotfill \pageref*{kinematics_and_dynamics} \linebreak \noindent\hyperlink{TheClassicalObservables}{The classical observables}\dotfill \pageref*{TheClassicalObservables} \linebreak \noindent\hyperlink{TheQuantumObservables}{The quantum observables}\dotfill \pageref*{TheQuantumObservables} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{characterization_of_the_quantum_observables}{Characterization of the quantum observables}\dotfill \pageref*{characterization_of_the_quantum_observables} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{0DimensionalFreeFieldTheory}{0-Dimensional free field theory}\dotfill \pageref*{0DimensionalFreeFieldTheory} \linebreak \noindent\hyperlink{examples_2}{Examples}\dotfill \pageref*{examples_2} \linebreak \noindent\hyperlink{locally_free_field_theories}{Locally free field theories}\dotfill \pageref*{locally_free_field_theories} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A [[field (physics)|field]] [[theory (physics)|theory]] in [[physics]] is called a \emph{free field theory} if it describes standard [[dynamics]] of fields without any [[interaction]]. Otherwise it is called an \emph{[[interacting field theory]]}. There is some freedom in formalizing precisely what this means. At the very least the [[equations of motion]] of a free field theory should be [[linear differential equations]]. In [[relativistic field theory]] over a [[Lorentzian manifold|Lorentzian]] [[spacetime]] one typically requires that the [[linear differential equation]] [[equation of motion|of motion]] is, after [[gauge fixing]], in fact the [[wave equation]] or [[Klein-Gordon equation]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{in_covariant_phase_space_geometrymultisymplectic_geometry}{}\subsubsection*{{In covariant phase space geometry/multisymplectic geometry}}\label{in_covariant_phase_space_geometrymultisymplectic_geometry} We describe free field theory in the language of [[covariant phase spaces]] of [[local Lagrangians]] and their [[multisymplectic geometry]]. Let $\Sigma = (\mathbb{R}^{d-1;1}, \eta)$ be [[Minkowski spacetime]]. Write the canonical [[coordinates]] as \begin{displaymath} \sigma^i \;\colon\; \Sigma \longrightarrow \mathbb{R} \,. \end{displaymath} Let $(X,g)$ be a [[vector space]] $X$ equipped with a [[bilinear form]] $g$ that makes it a [[Riemannian manifold]]. Write its canonical coordinates as \begin{displaymath} \phi^a \;\colon\; X \longrightarrow \mathbb{R} \,. \end{displaymath} Let then $X \times \Sigma \to \Sigma$ be the [[field bundle]]. Its first [[jet bundle]] then has canonical coordinates \begin{displaymath} \{ \sigma^i \}, \{\phi^a\}, \{\phi^a_{,i}\} \;\colon\; j_\infty^1(\Sigma \times X) \longrightarrow X \,. \end{displaymath} \begin{defn} \label{FreeFieldLocalLagrangian}\hypertarget{FreeFieldLocalLagrangian}{} The [[local Lagrangian]] for [[free field theory]] with this [[field bundle]] is \begin{displaymath} L \coloneqq \left( \frac{1}{2} g^{i j} \eta_{a b} \phi^a_{,i} \phi^a_{,j} \right) \wedge \mathbf{d}\sigma^1 \wedge \cdots \wedge \mathbf{d}\sigma^d \,. \end{displaymath} \end{defn} \begin{remark} \label{}\hypertarget{}{} The [[canonical momentum]]-densities for the free field local Lagrangian of def. \ref{FreeFieldLocalLagrangian} are \begin{displaymath} \begin{aligned} p_a^i \wedge \mathbf{d}\sigma^1 \wedge \cdots \wedge \mathbf{d}\sigma^d & \coloneqq \frac{\partial}{\partial u^a_i} L \\ & = \left( g^{i j} \eta_{a b} \phi^a_{,j} \right) \wedge \mathbf{d}\sigma^1 \wedge \cdots \wedge \mathbf{d}\sigma^d \end{aligned} \end{displaymath} \end{remark} \begin{remark} \label{}\hypertarget{}{} So the boundary term $\theta$ in [[variational calculus]], (see \href{covariant+phase+space#CanonicalThetaDensityInLocalCoordinates}{this remark} at \emph{[[covariant phase space]]} ) is \begin{displaymath} \begin{aligned} \mathbf{d}u^a \wedge \iota_{\partial_i} \left( \frac{\partial}{\partial \phi^a_{,i}}L \right) & = p^i_a \wedge (\iota_{\partial_{\sigma^i}} vol) \wedge \mathbf{d}u^a \\ & = p^i_a \wedge dq_i^a \,, \end{aligned} \end{displaymath} where in the last line we adopted the notation of \hyperlink{multisymplectic+geometry#CanonicalFormInGoodCoordinates}{this remark} at \emph{[[multisymplectic geometry]]}. This shows that the canonical [[multisymplectic form]] is the ``covariant symplectic potential current density'' which is induced by the free field Lagrangian. \end{remark} \hypertarget{in_bvformalism}{}\subsubsection*{{In BV-formalism}}\label{in_bvformalism} \hypertarget{kinematics_and_dynamics}{}\paragraph*{{Kinematics and dynamics}}\label{kinematics_and_dynamics} In the formalization of [[perturbation theory]] via [[BV-quantization]] as in (\hyperlink{CostelloGwilliam}{Costello-Gwilliam}), a free field theory is given by a [[BV-complex]] that arises from the following data. The following appears for instance as (\hyperlink{Gwilliam}{Gwilliam 2.6.2}). \begin{defn} \label{FreeFieldTheory}\hypertarget{FreeFieldTheory}{} A \textbf{free field theory} ([[local quantum field theory|local]], [[Lagrangian]]) is the following data \textbf{[[kinematics]]}: \begin{itemize}% \item A [[smooth manifold]] $X$ (``[[spacetime]]''/``[[worldvolume]]''); \item a $\mathbb{Z}$-[[graded object|graded]] [[complex numbers|complex]] [[vector bundle]] $E \to X$ (the ``[[field bundle]]'' containing also in general [[antifields]] and [[ghosts]]); \item equipped with a [[bundle]] [[homomorphism]] (the ``[[antibracket]] [[density]]'') \begin{displaymath} \langle -,-\rangle_{loc} \;\colon\; E \times E \to Dens_X \end{displaymath} from the fiberwise [[tensor product]] of $E$ with itself to the compex [[density bundle]] which is fiberwise \begin{itemize}% \item non-degenerate \item anti-symmetric \item of degree -1 \end{itemize} \end{itemize} (See also at \emph{[[Verdier duality]]}.) Write $\mathcal{E}_c \coloneqq \Gamma_{cp}(E)$ for the space of [[sections]] of the [[field bundle]] of [[compact support]]. Write \begin{displaymath} \langle -,-\rangle \;\colon\; \mathcal{E}_c \otimes \mathcal{E}_c \to \mathbb{C} \end{displaymath} for the induced pairing on sections \begin{displaymath} \langle \phi, \psi\rangle = \int_{x \in X} \langle \phi(x), \psi(x)\rangle_{loc} \,. \end{displaymath} The paring being non-degenerate means that we have an [[isomorphism]] $E \stackrel{\simeq}{\to} E^* \otimes Dens_X$ and we write \begin{displaymath} E^! \coloneqq E^* \otimes Dens_X \,. \end{displaymath} \textbf{[[dynamics]]} \begin{itemize}% \item A [[differential operator]] on sections of the [[field bundle]] \begin{displaymath} Q \;\colon\; \mathcal{E} \to \mathcal{E} \end{displaymath} of degree 1 such that \begin{enumerate}% \item $(\mathcal{E}, Q)$ is an [[elliptic complex]]; \item $Q$ is [[self-adjoint operator|self-adjoint]] with respect to $\langle -,-\rangle$ in that for all [[field (physics)|fields]] $\phi,\psi \in \mathcal{E}_c$ of homogeneous degree we have $\langle \phi , Q \psi\rangle = (-1)^{{\vert \phi\vert}} \langle Q \phi, \psi\rangle$. \end{enumerate} \end{itemize} \end{defn} \begin{remark} \label{}\hypertarget{}{} From this data we obtain: \begin{itemize}% \item The [[action functional]] $S \colon \mathcal{E}_c \to \mathbb{C}$ of this corresponding free field theory is \begin{displaymath} S \;\colon\; \phi \mapsto \int_X \langle \phi, Q \phi\rangle \,. \end{displaymath} \item The [[classical BV-complex]] is the [[symmetric algebra]] $Sym \mathcal{E}^!_c$ of [[compact support|compactly suppported]] [[sections]] of $E^!$ equipped with the induced action of the differential $Q$ and the pairing \begin{displaymath} \{\alpha,\beta\} \coloneqq \int_{x \in X} \langle \alpha(x), \beta(x)\rangle \,. \end{displaymath} See below at \emph{\hyperlink{TheClassicalObservables}{The classical observables}} for more. \item The [[quantum BV-complex]] \begin{displaymath} Obs^q \coloneqq (Sym \mathcal{E}^!_c[ [\hbar] ], Q + \hbar \Delta) \end{displaymath} is the deformation of the above to the [[symmetric algebra]] tensored with the [[formal power series]] in $\hbar$ (``[[Planck's constant]]'') $Sym(\mathcal{E}^!)[ [\hbar] ]$ and differential $Q + \hbar \Delta$ with [[BV-Laplacian]] defined to vanish on $Sym^{\leq 1}$, given by \begin{displaymath} \Delta (\alpha \cdot \beta) \coloneqq \{\alpha,\beta\} \end{displaymath} for $\alpha,\beta \in \mathcal{E}^!$ and extended by the formula \begin{displaymath} \Delta(a \cdot b) \coloneqq (\Delta a) \cdot b + (-1)^{deg(a)} a \cdot (\Delta b) + \{a,b\} \,. \end{displaymath} See below at \emph{\hyperlink{TheQuantumObservables}{The quantum observables}} for more. \end{itemize} A closed element $\mathcal{O} \in Obs^q$ is an [[observable]] and its formal [[path integral]] [[expectation value]] $\langle \mathcal{O}\rangle$ is its image in the [[cochain cohomology]] $H^\bullet Obs^q$. Via the [[homological perturbation lemma]] this may be computed in [[perturbation theory]] (order by order in $\hbar$) in terms of [[Feynman diagrams]]. In a non-free field theory the differential would have an additional perturbation of the complex by an [[interaction]] term $I$ to \begin{displaymath} Q + \{I,-\} + \hbar \Delta \,. \end{displaymath} \end{remark} [[!include action (physics) - table]] \hypertarget{TheClassicalObservables}{}\paragraph*{{The classical observables}}\label{TheClassicalObservables} For $(E, Q, \langle-, -\rangle_{loc})$ a free field theory, def. \ref{FreeFieldTheory}, write \begin{displaymath} E^! \coloneqq E^\ast \otimes Dens_X \end{displaymath} and accordingly write $\overline{\mathcal{E}^!}$ for its [[distribution|distributional]] [[sections]]. This is the distributional dual to the smooth sections $\mathcal{E}$ of $E$. \begin{defn} \label{ClassicalObservables}\hypertarget{ClassicalObservables}{} The complex of \textbf{global classical observables} of the free field theory $(E,Q, \langle-,- \rangle_{loc})$ is the [[classical BV-complex]] \begin{displaymath} Obs^{cl} \coloneqq (Sym \mathcal{E}^!_c, Q) \end{displaymath} given by the [[symmetric algebra]] of dual sections and quipped with the dual of the differential (which we denote by the same letter) defined on generators and then extended as a graded [[derivation]] to the full [[symmetric algebra]]. The [[factorization algebra]] of local classical observables is the [[cosheaf]] of these observables which assigns to $U \subset X$ the complex \begin{displaymath} Obs^{cl} \colon U \mapsto (Sym \mathcal{E}^!_c(U), Q) \,. \end{displaymath} \end{defn} in (\hyperlink{Gwilliam}{Gwilliam}), this is def. 5.3.6. \hypertarget{TheQuantumObservables}{}\paragraph*{{The quantum observables}}\label{TheQuantumObservables} There is a canonical [[BV-quantization]] of the \hyperlink{TheClassicalObservables}{above classical observable} of a free field theory given by defining the [[BV Laplacian]] as follows. \begin{defn} \label{TheStandardBVLaplacian}\hypertarget{TheStandardBVLaplacian}{} For $(E, Q, \langle -,-\rangle_{loc})$ a free field theory, def. \ref{FreeFieldTheory}, the \textbf{standard [[BV Laplacian]]} \begin{displaymath} \Delta \colon Sym \mathcal{E}^!_c \to Sym \mathcal{E}^!_c \end{displaymath} is given on generators $a,b \in Sym^1 \mathcal{E}^!_c$ of homogeneous degree by \begin{displaymath} \Delta(a \cdot b) \coloneqq \{a,b\} \end{displaymath} and then extended to arbitrary elements by the formula \begin{displaymath} \Delta(a \cdot b) \coloneqq (\Delta a) \cdot b + (-1)^{deg(a)} a \cdot (\Delta b) + \{a,b\} \end{displaymath} \end{defn} In (\hyperlink{Gwilliam}{Gwilliam}) this is construction 2.4.9 (also construction 3.1.6, and section 5.3.3). \begin{defn} \label{QuantumObservables}\hypertarget{QuantumObservables}{} For $(E, Q, \langle -,-\rangle_{loc})$ a free field theory, def. \ref{FreeFieldTheory} its complex of \textbf{[[quantum observables]]} is then the corresponding [[quantum BV-complex]] deformation of the classical BV-complex, def. \ref{ClassicalObservables}, given by the standard BV-Laplacian of def.\ref{TheStandardBVLaplacian} \begin{displaymath} Obs^{q} \colon U \mapsto \left( Sym(\mathcal{E}^!_c(U))[ [ \hbar ] ], Q + \hbar \Delta \right) \,. \end{displaymath} \end{defn} In (\hyperlink{Gwilliam}{Gwilliam}) this is def. 5.3.9. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{characterization_of_the_quantum_observables}{}\subsubsection*{{Characterization of the quantum observables}}\label{characterization_of_the_quantum_observables} We characterize the [[cochain complex]] $Obs^q$ of [[quantum observables]] of def. \ref{QuantumObservables} by an equivalent but small complex built from just the [[cochain cohomology]] of the [[elliptic complex]] of [[field (physics)|fields]] $(\mathcal{E}, Q)$. \begin{defn} \label{TheQuantumBVComplexOnTheCohomologyOfTheFieldComplex}\hypertarget{TheQuantumBVComplexOnTheCohomologyOfTheFieldComplex}{} For $(E, Q, \langle -,-\rangle_{loc})$ a free field theory, def. \ref{FreeFieldTheory}, the global pairing constitutes a dg-[[symplectic vector space]] $(\mathcal{E}, Q, \langle -,-\rangle)$, which descends to the [[cochain cohomology]] to a graded symplectic vector space $(H^\bullet(\mathcal{E}, \langle -,-\rangle)$; hence by def. \ref{TheStandardBVLaplacian} there is a standard [[BV-Laplacian]] $\Delta_{H^\bullet\mathcal{E}}$. Write \begin{displaymath} \mathcal{BVQ}(H^\bullet \mathcal{E}) \coloneqq ( Sym (H^\bullet(\mathcal{E}))^*, \Delta_{H^\bullet \mathcal{E}} ) \end{displaymath} for the corresponding [[quantum BV-complex]]. \end{defn} This is part of (\hyperlink{Gwilliam}{Gwilliam, prop. 2.4.10, prop. 5.5.1}), \begin{quote}% Handle the following with care for the moment. \end{quote} \begin{prop} \label{}\hypertarget{}{} For a free field theory $(E,Q,\langle-,- \rangle_{loc})$, def. \ref{FreeFieldTheory}, the complex of quantum observables $Obs^q$, def. \ref{QuantumObservables} is [[quasi-isomorphism|quasi-isomorphic]] to the BV-quantization of the cohomology of the field complex, given by def. \ref{TheQuantumBVComplexOnTheCohomologyOfTheFieldComplex} \begin{displaymath} Obs^q \simeq \mathcal{BVQ}(H^\bullet(\mathcal{E})) \,. \end{displaymath} \end{prop} This is (\hyperlink{Gwilliam}{Gwilliam, prop. 5.5.1}). The proof is supposedly along the lines of (\hyperlink{Gwilliam}{Gwilliam, section 2.5}), applying the [[homological perturbation lemma]]. \begin{prop} \label{}\hypertarget{}{} The bracket $\{-,-\}$ on the complex of quantum observables $Obs^q$ of def. \ref{QuantumObservables} descends to a bracket on [[cochain cohomology]], making $(H^\bullet (Obs^q), \{-,-\})$ into a graded [[symplectic vector space]]. \end{prop} \begin{proof} Let $a,b \in Obs^q$ be closed elements of homogeneous degree. Then by the compatibly of $\Delta$ with $\{-,-\}$ also $\{a,b\}$ is closed: \begin{displaymath} \Delta \{a,b\} = \{\Delta a, b\} \pm \{a , \Delta b\} = 0 \,. \end{displaymath} Let in addition $c \in Obs^q$ be any element. Then \begin{displaymath} \begin{aligned} \{a, b + \Delta c\} &= \{a,b\} + \{a, \Delta c\} \\ & = \{a,b\} + \Delta (a \cdot (\Delta b)) - (\Delta a)\cdot b -a \cdot (\Delta^2 b) \\ & = \{a,b\} + \Delta (a \cdot (\Delta b)) \end{aligned} \end{displaymath} and hence the cohomology class of $\{a,b\}$ is independent of the representative cocycle $b$, and similarly for $a$. \end{proof} \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} \hypertarget{0DimensionalFreeFieldTheory}{}\subsubsection*{{0-Dimensional free field theory}}\label{0DimensionalFreeFieldTheory} A degenerate but instructive class of examples to compare to is the case where $X = *$ is the 0-dimensional connected manifold: the point. (See (\hyperlink{Gwilliam}{Gwilliam 2.3.1})). In this case \begin{displaymath} E = V \oplus V^*[-1] \end{displaymath} is the [[direct sum]] of a vector space and its formal dual shifted in degree. The pairing is the canonical pairing between a vector space and its dual. If $\{x^i \colon V \to \mathbb{R}\}_i$ is a [[basis]] for functional on $V$ and $\{\xi_i\}$ is the corresponding basis of functions on $V^*[-1]$, then the [[antibracket]] in this case is \begin{displaymath} \{ X^i, x^j \} = 0 \;\;\; \{\xi_i, \xi_j\} = 0 \;\;\; \{x^i, \x_j\} = \delta^i_j \,. \end{displaymath} The [[BV-Laplacian]] in this basis is \begin{displaymath} \Delta = \sum_{i = 1}^n \frac{\partial}{\partial x^i} \frac{\partial}{\partial \xi_i} \,. \end{displaymath} The [[action functional]] is a [[Gaussian distribution]] over $V$ defined by a matrix $A = (a_{i j})$. The corresponding differential is \begin{displaymath} Q = \sum_{i,j =1}^n x^i a_{i j} \frac{\partial}{\partial \xi_i} \,. \end{displaymath} Hence for a field of the form \begin{displaymath} \phi = \sum_{i = 1}^n \phi^i \xi_i \end{displaymath} we have the [[action functional]] \begin{displaymath} \begin{aligned} \exp(S(\phi)) & = \exp(-\langle \phi , Q \phi\rangle) \\ & = \exp( - \phi^i a_{k j} \phi^j \langle \xi_i, x^k \rangle ) \\ & = \exp(- \phi^i a_{i j} \phi^j ) \end{aligned} \end{displaymath} \hypertarget{examples_2}{}\subsection*{{Examples}}\label{examples_2} \hypertarget{locally_free_field_theories}{}\subsubsection*{{Locally free field theories}}\label{locally_free_field_theories} Some [[sigma-model]] quantum field theories have the property that they are fee \emph{locally} on their [[target spaces]]. Under good conditions then [[quantization]] of free field theory locally yields a [[sheaf]] of [[quantum observables]] on [[target space]] from which the full quantization of the field theory may be reconstructed. A famous example of this is the [[topological twist|topologically twisted]][[2d (2,0)-superconformal QFT]] (see there for more, and see (\hyperlink{{#Gwilliam}}{Gwilliam, section 6} for the description in terms of [[factorization algebras]]). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Wick algebra]] \item [[Gaussian probability distribution]], [[Gaussian integral]] \item [[Wick's lemma]] \item [[gauge theory]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Discussion of free field theories and their [[quantization]] on [[globally hyperbolic Lorentzian manifolds]] is in \begin{itemize}% \item [[Christian Bär]], [[Nicolas Ginoux]], [[Frank Pfäffle]], \emph{Wave Equations on Lorentzian Manifolds and Quantization}, ESI Lectures in Mathematics and Physics, European Mathematical Society Publishing House, ISBN 978-3-03719-037-1, March 2007, Softcover (\href{https://arxiv.org/abs/0806.1036}{arXiv:0806.1036}) \end{itemize} Discussion on Euclidean manifolds and in terms of [[BV-formalism]] is in \begin{itemize}% \item [[Kevin Costello]], [[Owen Gwilliam]], \emph{Factorization algebras in perturbative quantum field theory} (\href{http://math.northwestern.edu/~costello/factorization_public.html}{wiki}, \href{http://math.northwestern.edu/~gwilliam/factorization.pdf}{pdf}) \item [[Owen Gwilliam]], \emph{Factorization algebras and free field theories} PhD thesis ([[GwilliamThesis.pdf:file]]) \item [[Owen Gwilliam]], [[Rune Haugseng]], \emph{Linear Batalin-Vilkovisky quantization as a functor of ∞-categories} (\href{https://arxiv.org/abs/1608.01290}{arXiv:1608.01290}) \end{itemize} [[!redirects free field theories]] [[!redirects free field]] [[!redirects free fields]] [[!redirects free quantum field theory]] [[!redirects free quantum field theories]] [[!redirects free quantum field]] [[!redirects free quantum fields]] \end{document}