\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{free module} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebra}{}\paragraph*{{Algebra}}\label{algebra} [[!include higher algebra - contents]] \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{over_rings}{Over rings}\dotfill \pageref*{over_rings} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{as_a_monoidal_functor}{As a monoidal functor}\dotfill \pageref*{as_a_monoidal_functor} \linebreak \noindent\hyperlink{SubmodulesOfFreeModules}{Submodules of free modules}\dotfill \pageref*{SubmodulesOfFreeModules} \linebreak \noindent\hyperlink{over_a_field_vector_spaces}{Over a field: vector spaces}\dotfill \pageref*{over_a_field_vector_spaces} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{free module} over some [[ring]] $R$ is [[free construction|freely generated]] on a [[set]] of [[basis]] elements. Under the \href{module#RelationToVectorBundlesInIntroduction}{interpretation of modules as generalized vector bundles} a \emph{free module} corresponds to a \emph{trivial} bundle. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{general}{}\subsubsection*{{General}}\label{general} Let $C$ be a [[monoidal category]], and $Alg(C)$ the [[category]] of [[monoids]] in $C$ and for $A \in Alg(C)$ let $A$[[Mod]]$(C)$ be the category of $A$-[[modules]] in $C$. There is the evident [[forgetful functor]] $U : A Mod(C) \to C$ that sends each module $(N,\rho)$ to its underlying object $N \in C$. \begin{defn} \label{}\hypertarget{}{} The [[left adjoint]] $C \to A Mod(C)$ is the corresponding [[free construction]]. The modules in the image of this functor are \emph{free modules}. \end{defn} \hypertarget{over_rings}{}\subsubsection*{{Over rings}}\label{over_rings} Let $R$ be a ring. We discuss free [[modules]] over $R$. \begin{prop} \label{}\hypertarget{}{} For $R \in$ [[Ring]] a [[ring]] and $S \in$ [[Set]], the free $R$-module on $S$ is isomorphic to the ${\vert S\vert}$-fold [[direct sum]] of $R$ with itself \begin{displaymath} R^{(S)}\simeq \oplus_{s \in S} R \,. \end{displaymath} \end{prop} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{as_a_monoidal_functor}{}\subsubsection*{{As a monoidal functor}}\label{as_a_monoidal_functor} Let $R$ be a commutative ring, and let $R\{X\}$ denote the free $R$-module on a set $X$. \begin{prop} \label{}\hypertarget{}{} The free $R$-module functor is strong monoidal with respect to the Cartesian monoidal structure on sets, and the tensor product of $R$-modules. \end{prop} In other words, the free module construction turns set-theoretic products into tensor products. Thus, it preserves algebraic objects (such as [[monoid object]]s, [[Hopf monoid]] objects, etc.) and their homomorphisms. In particular, if $M$ is a monoid in the category of sets (and hence a bimonoid with the canonical comonoid structure) then $R\{M\}$ is a bimonoid object in $R \mathsf{Mod}$, which is precisely a $K$-bialgebra. A group $G$ in the category of sets is a Hopf monoid, and hence $R\{G\}$ is a Hopf algebra --- this is precisely the [[group algebra]] of $G$. \hypertarget{SubmodulesOfFreeModules}{}\subsubsection*{{Submodules of free modules}}\label{SubmodulesOfFreeModules} Let $R$ be a commutative [[ring]]. \begin{prop} \label{submod}\hypertarget{submod}{} Assuming the [[axiom of choice]], the following are equivalent \begin{enumerate}% \item every [[submodule]] of a free $R$-module is itself free; \item every [[ideal]] in $R$ is a free $R$-module; \item $R$ is a [[principal ideal domain]]. \end{enumerate} \end{prop} \begin{proof} (See also \hyperlink{Rotman}{Rotman, pages 650-651}.) Condition 1. immediately implies condition 2., since ideals of $R$ are the same as submodules of $R$ seen as an $R$-module. Now assume condition 2. holds, and suppose $x \in R$ is any nonzero element. Let $\lambda_x$ denote multiplication by $x$ (as an $R$-module map). We have a sequence of surjective $R$-module maps \begin{displaymath} R \stackrel{\lambda_x}{\to} (x) \cong \oplus_J R \stackrel{\nabla}{\to} R \end{displaymath} (where $\nabla$ is the [[codiagonal]] map); by the [[Yoneda lemma]], the composite map $R \to R$ is of the form $\lambda_r$, where $r \in R$ is the value of the composite at $1 \in R$. Since $\lambda_r$ is surjective, we have $\lambda_r(s) = r s = 1$ for some $s$, so that $r$ is invertible. Hence $\lambda_r$ is invertible, and this implies $\lambda_x$ is monic. Therefore $R$ is a domain. From that, we infer that if $f$ and $g$ belong to a basis of an ideal $I$, then \begin{displaymath} 0 \neq f g \in R\cdot f \cap R \cdot g \end{displaymath} whence $f$ and $g$ are not linearly independent, so $f = g$ and $I$ as an $R$-module is generated by a single element, i.e., $R$ is a principal ideal domain. That condition 3. implies condition 1. is proved \href{http://ncatlab.org/nlab/show/principal+ideal+domain#free}{here}. \end{proof} \begin{cor} \label{}\hypertarget{}{} Assuming the [[axiom of choice]], over a ring $R$ which is a [[principal ideal domain]], every [[module]] has a [[projective resolution]] of length 1. \end{cor} See at \href{projective+resolution#Lenght1ResolutionsOfAbelianGroups}{projective resolution -- Resolutions of length 1} for more. \hypertarget{over_a_field_vector_spaces}{}\subsubsection*{{Over a field: vector spaces}}\label{over_a_field_vector_spaces} Assuming the [[axiom of choice]], if $R = k$ is a [[field]] then every $R$-[[module]] is free: it is $k$-[[vector space]] and by the \emph{[[basis theorem]]} every such has a [[basis of a vector space|basis]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[locally free module]] \item [[finitely generated module]], [[finitely presented module]] \item \textbf{free module} $\Rightarrow$ [[projective module]] $\Rightarrow$ [[flat module]] $\Rightarrow$ [[torsion-free module]] \item [[basis of a free module]] \item [[projective object]], [[projective presentation]], [[projective cover]], [[projective resolution]] \item [[injective object]], [[injective presentation]], [[injective envelope]], [[injective resolution]] \begin{itemize}% \item [[injective module]] \end{itemize} \item [[free object]], [[free resolution]] \item flat object, [[flat resolution]] \begin{itemize}% \item [[flat module]] \end{itemize} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Rotman \emph{Advanced Modern Algebra}, pp. 650--651 \end{itemize} [[!redirects free modules]] \end{document}