\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{free monad} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{free_monads}{}\section*{{Free monads}}\label{free_monads} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{free_finitary_monads}{Free finitary monads}\dotfill \pageref*{free_finitary_monads} \linebreak \noindent\hyperlink{algebraicallyfree_monads}{Algebraically-free monads}\dotfill \pageref*{algebraicallyfree_monads} \linebreak \noindent\hyperlink{constructions}{Constructions}\dotfill \pageref*{constructions} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{free monad} is a [[free object]] relative to a [[forgetful functor]] whose domain is a [[category]] of [[monads]]. This general concept has many different specific incarnations, since there are potentially many different such forgetful functors. Suppose $C$ is a [[category]], and write $Mnd(C)$ for the category whose objects are monads on $C$ and whose morphisms are natural transformations commuting with the monad structure maps; i.e. it is the category of [[monoids]] in the [[monoidal category]] of endofunctors with composition. Then we have a string of forgetful functors: \begin{displaymath} Mnd(C) \to PtEnd(C) \to End(C) \to [ob(C),C] \end{displaymath} where $End(C)$ denotes the category of [[endofunctors]] of $C$, and $PtEnd(C)$ denotes the category of [[pointed endofunctors]], i.e. endofunctors $F$ equipped with a natural transformation $Id\to F$. A \emph{free monad} can then be considered as a free object relative to any one of these forgetful functors. \hypertarget{free_finitary_monads}{}\subsection*{{Free finitary monads}}\label{free_finitary_monads} In general, these forgetful functors cannot be expected to have [[left adjoints]], i.e. there will not be a [[free functor|``free monad functor'']], but individual objects can often be shown to generate free monads. One general case in which this is true is when $C$ is [[locally presentable category|locally presentable]] and we consider monads and endofunctors which are [[accessible functor|accessible]], i.e. preserve sufficiently highly [[filtered colimits]]. Suppose for the sake of argument that $C$ is locally \emph{finitely} presentable (the higher-ary case is analogous). Then we can restrict the above string of forgetful functors to the [[finitary monads]], i.e. those preserving filtered colimits, to obtain: \begin{displaymath} Mnd_f(C) \to PtEnd_f(C) \to End_f(C) \to [ob(C)_f,C] \end{displaymath} where the subscript $f$ denotes restriction to finitary things, and $ob(C)_f$ is the set of [[compact objects]] of $C$. In this case, all these forgetful functors do have left adjoints, and moreover at least the functors $Mnd_f(C) \to End_f(C)$ and $Mnd_f(C) \to [ob(C)_f,C]$ are monadic. (This is shown in the papers cited below.) The construction is by a convergent [[transfinite composition]]. For example, the left adjoint to $Mnd_f(C) \to End_f(C)$, shows that there exists a ``free finitary monad'' on any finitary endofunctor. Note, though, that this does not \emph{automatically} imply that the ``free finitary monad'' on a finitary endofunctor is also a ``free monad'' on that endofunctor, i.e. that as a free object it satisfies the requisite universal property relative to all objects of $Mnd(C)$, not merely those lying in $Mnd_f(C)$. It is, however, generally true that this is the case: free finitary monads are also free monads. \hypertarget{algebraicallyfree_monads}{}\subsection*{{Algebraically-free monads}}\label{algebraicallyfree_monads} We say that a monad $T$ is \textbf{algebraically-free} on an endofunctor $F$ if the category $T Alg_{mnd}$ of $T$-algebras (in the sense of [[algebras for a monad]]) is equivalent to the category $F Alg_{endo}$ of $F$-algebras (in the sense of [[algebras for an endofunctor]]). \textbf{N.B.}: Any such equivalence must be an isomorphism $T Alg_{mnd} \cong F Alg_{endo}$, because the underlying functors from the categories of algebras in each case are [[amnestic functor|amnestic]] [[isofibrations]]. See remarks at the article [[monadicity theorem]] on monadicity \emph{vis-\`a{}-vis} strict monadicity. \emph{A priori}, being algebraically free is different from being free. However, one can show the following. \begin{theorem} \label{}\hypertarget{}{} Any algebraically-free monad is free. \end{theorem} \begin{proof} First observe that for a (perhaps pointed) endofunctor $F$ and a monad $T$, to give a functor $T Alg_{mnd} \to F Alg_{endo}$ over $C$ is equivalent to giving a (pointed) transformation $F\to T$, and if $F$ is a monad then such a functor takes values in $F Alg_{mnd}$ iff the transformation $F\to T$ is a monad morphism. Thus, if $F Alg_{endo} \cong T Alg_{mnd}$, then for any other monad $S$, (pointed) transformations $F\to S$ correspond to maps $S Alg_{mnd} \to F Alg_{endo} \cong T Alg_{mnd}$ and hence to monad morphisms $T\to S$, i.e. $T$ is free on $F$. \end{proof} \begin{theorem} \label{}\hypertarget{}{} If $C$ is [[locally small category|locally small]] and [[complete category|complete]], then any free monad is algebraically-free. \end{theorem} \begin{proof} For any object $x\in C$, the assumptions ensure that the [[codensity monad]] of $x$ exists. This is the right [[Kan extension]] of $x\colon 1\to C$ along itself, which we write as $\langle x,x\rangle$. The universal property of Kan extensions means that for any endofunctor $F$, to give a map $F x \to x$ (i.e. to make $x$ into an $F$-algebra) is the same as to give a natural transformation $F\to \langle x,x\rangle$. Moreover, one can check that if $F$ is a pointed endofunctor (resp. a monad), then the map $F x \to x$ is a pointed (resp. monad) algebra iff the corresponding transformation $F\to \langle x,x\rangle$ is a morphism of pointed endofunctors (resp. of monads). Therefore, if $T$ is the free monad on $F$, then applying its universal property in $Mnd(C)$ to the monad $\langle x,x\rangle$, we see that it is also algebraically-free. \end{proof} Notice that this second proof relies crucially on the fact that free monads have a universal property relative to a forgetful functor whose domain is all of $Mnd(C)$, not just some subcategory of finitary or accessible monads, since $\langle x,x\rangle$ will not in general be finitary or accessible. \hypertarget{constructions}{}\subsection*{{Constructions}}\label{constructions} Perhaps the most general [[set theory|set-theoretically]] based construction of (algebraically) free monads is the [[transfinite construction of free algebras]]. (In [[type theory]], it is natural to use instead [[higher inductive types]].) \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item The monadicity of the above adjunctions can be used to give [[presentation]]s of monads in terms of [[generators and relations]]. This has close connections with [[Lawvere theories]] and related ideas. \item Free monads on pointed endofunctors play an important role in the construction of cofibrantly generated [[algebraic weak factorization systems]]. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item The [[algebra over a monad]] over a free monad on an endofunctor is an \emph{[[algebra over an endofunctor]]}. \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Max Kelly]], \href{http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=4759448}{``A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on''} \item [[Max Kelly]] and [[John Power]], \href{http://www.sciencedirect.com/science/article/pii/0022404993900928}{``Adjunctions whose counits are coequalizers, and presentations of finitary enriched monads''} \item [[Steve Lack]], \href{http://www.maths.usyd.edu.au/res/Catecomb/Lack/1997-29.html}{``On the monadicity of finitary monads''} \item [[Nicola Gambino]], [[Martin Hyland]], section 6 of \emph{Wellfounded trees and dependent polynomial functors}. In Types for proofs and programs, volume 3085 of Lecture Notes in Comput. Sci., pages 210--225. Springer-Verlag, Berlin, 2004 (\href{http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.98.4534}{web}) \end{itemize} [[!redirects free monads]] [[!redirects algebraically-free monad]] [[!redirects algebraically-free monads]] [[!redirects algebraically free monad]] [[!redirects algebraically free monads]] \end{document}