\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{free monoid} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebra}{}\paragraph*{{Algebra}}\label{algebra} [[!include higher algebra - contents]] \hypertarget{induction}{}\paragraph*{{Induction}}\label{induction} [[!include induction - contents]] \hypertarget{finite_lists_and_free_monoids}{}\section*{{Finite lists and free monoids}}\label{finite_lists_and_free_monoids} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{as_functions}{As functions}\dotfill \pageref*{as_functions} \linebreak \noindent\hyperlink{recursively}{Recursively}\dotfill \pageref*{recursively} \linebreak \noindent\hyperlink{by_general_abstract_nonsense}{By general abstract nonsense}\dotfill \pageref*{by_general_abstract_nonsense} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{the_free_monoid_monad}{The free monoid monad}\dotfill \pageref*{the_free_monoid_monad} \linebreak \noindent\hyperlink{foundational_relevance}{Foundational relevance}\dotfill \pageref*{foundational_relevance} \linebreak \noindent\hyperlink{stacks_and_queues}{Stacks and queues}\dotfill \pageref*{stacks_and_queues} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Given a [[set]] $S$, the \textbf{free [[monoid]]} on $S$ is the set $S^*$ of all \textbf{lists} (finite [[sequences]]) of elements of $S$, made into a monoid using \textbf{concatenation}. The [[free functor]] from [[Set]] to [[Mon]] takes $S$ to $S^*$. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} We will give three definitions, which can all be shown equivalent. \hypertarget{as_functions}{}\subsubsection*{{As functions}}\label{as_functions} An element of $S^*$ consists of a [[natural number]] $n$ (possibly $n = 0$) and function from $[n]$ to $S$, where $[n]$ is the [[subset]] $\{i\colon \mathbf{N} \;|\; i \lt n\}$ of $\mathbf{N} = \{0, 1, 2, \ldots\}$. Such an element is called a \textbf{list} or (to specify $n$) \textbf{$n$-tuple} of elements of $S$. The number $n$ is called the \textbf{length} of the list. The \textbf{[[empty list]]} is the unique list of length $0$. It may be written $()$, $*$, or $\epsilon$, perhaps with a subscript $S$ if desired. If $n \gt 0$, then the list which assigns $0, \ldots, n - 1$ to $a_0, a_1, \ldots, a_{n-1}$ may be written $(a_0, a_1, \ldots, a_{n-1})$. For example, if $a,b,c$ are elements of $S$, then $(a,b,c)$ is an element of $S^*$. Given two lists $x$ and $y$, the former of length $m$ and the latter of length $n$, their \textbf{concatenation} $x * y$ is a list of length $m + n$, given as follows: \begin{displaymath} i \mapsto \left\{ \array { x_i & if\; i \lt m \\ y_{i-m} & if\; i \geq m } \right. \end{displaymath} One can now show that concatenation is associative with the empty list as identity; hence $S^*$ is a monoid. \hypertarget{recursively}{}\subsubsection*{{Recursively}}\label{recursively} The (underlying) set $S^*$ may be defined as an [[inductive type]] as follows. There are two basic constructors, one with no arguments, and one with two arguments, of which one is an element of $S$ and the other is an element of $S^*$. By the yoga of inductive types, that is a complete definition, but we spell it out in more detail while also giving terminology and notation. So, a \textbf{list} is either the \textbf{[[empty list]]} or the \textbf{cons} (short for `constructor' and deriving from Lisp) of an element $a$ of $S$ and a (previously constructed) list $x$. The empty list may may be written $()$, $*$, or $nil$, perhaps with a subscript $S$ if desired; the cons of $a$ and $x$ may be written $a : x$, $(a) * x$, or $cons(a,x)$. We interpret the definition [[recursion|recursively]], so we can list the elements of $S^*$ in the order in which they appear: \begin{itemize}% \item $()$, \item $a : ()$, \item $a : b : ()$, \item $a : b : c : ()$, \item etc. \end{itemize} Here, $a, b, c, \ldots$ are elements of $S$. We may continue the `etc' as far as we like, but no farther; while there are lists of arbitrarily long finite length, there are no lists of infinite length. (We would get such lists, however, if we interpreted the definition [[corecursion|corecursively]], known in computer science as a [[stream]].) We normally abbreviate the lists above as follows: \begin{itemize}% \item $()$, \item $(a)$, \item $(a,b)$, \item $(a,b,c)$, \item etc. \end{itemize} We still must define the monoidal structure on $S^*$; we define the \textbf{concatenation} $x * y$ of $x$ and $y$ recursively in $x$. To be explicit: \begin{itemize}% \item $() * y = y$; \item $(a : x) * y = a : (x * y)$ (with parentheses for grouping, but the parentheses can be dropped now that have this definition). \end{itemize} One can now show that concatenation is associative with the empty list as identity; hence $S^*$ is a monoid. \hypertarget{by_general_abstract_nonsense}{}\subsubsection*{{By general abstract nonsense}}\label{by_general_abstract_nonsense} To prove that the category [[Mon]] of monoids is a [[complete category]], one normally shows that the [[forgetful functor]] $U$ (from $Mon$ to the category [[Set]] of sets) preserves all [[limits]]. Then, the [[adjoint functor theorem]] defines a [[left adjoint]] to $U$ if a size condition is met; this adjoint is the functor $*$ that takes a set to its free monoid $S^*$. To be sure, meeting the solution set condition basically requires starting the constructions in one of the other definitions above; but the proofs may all be thrown onto the adjoint functor theorem. Another abstract approach is given in the following general theorem, which applies to more general [[monoid in a monoidal category|monoids in a monoidal category]]: \begin{theorem} \label{monoid_in_monoidal}\hypertarget{monoid_in_monoidal}{} Suppose $C$ is a monoidal category with countable coproducts for which the tensor product distributes over countable coproducts (for example, a [[cocomplete category|cocomplete]] [[monoidal biclosed category]]). Then a left adjoint to the forgetful functor $Mon(C) \to C$ exists, taking an object $c$ to \begin{displaymath} \sum_{n \geq 0} c^{\otimes n}, \end{displaymath} which thereby becomes the free monoid on $c$. \end{theorem} This applies immediately to $C = Set$, as this is a cocomplete [[cartesian closed category]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item If $S$ is the [[empty set]], then $S^*$ consists only of the empty list; it is the trivial monoid, one manifestation of the [[point]]. \item If $S$ is the point, then $S^*$ is $\mathbf{N}$; the only information in a list of indistinguishable points is the length of the list. The monoid operation on $\mathbf{N}$ is addition. \item If $S$ is $\mathbf{N}$, then $\mathbf{N}^*$ is still a [[denumerable set]]. But note that $\mathbf{N} \cong \mathbf{N}^*$ only as sets (that is, ${|\mathbf{N}^*|} = {|\mathbf{N}|} = \aleph_0$ as [[cardinal numbers]]); they are quite different as monoids. \item Generalising the above, ${|S^*|} = {|S|}$ is $S$ is an [[infinite set]], or more generally ${|S^*|} = max(\aleph_0,S)$ if $S$ is an [[inhabited set]]. (These theorems probably require the [[axiom of choice]], but I haven't checked thoroughly.) \end{itemize} \hypertarget{the_free_monoid_monad}{}\subsection*{{The free monoid monad}}\label{the_free_monoid_monad} If the free monoid functor $F\colon Set \to Mon$ is followed by the forgetful functor $U\colon Mon \to Set$, then we get a [[monad]] on $Set$. This monad is very important in [[computer science]], where it is known as the \textbf{list monad}. The list monad bears the same relation to [[multicategories]] as the [[identity monad]] on $Set$ bears to ordinary [[categories]]. This relation should be explained at [[generalized multicategory]]. \hypertarget{foundational_relevance}{}\subsection*{{Foundational relevance}}\label{foundational_relevance} Every definition of free monoid makes use of some form of [[axiom of infinity]], either $\mathbf{N}$ directly or the ability to form general inductive types. Indeed, as $\mathbf{N} = pt^*$, the axiom of infinity follows from the existence of free monoids. In [[topos theory]] the equivalent of the above theorem \ref{monoid_in_monoidal} is due to C. J. Mikkelsen: \begin{prop} \label{free_monoids_in_topos}\hypertarget{free_monoids_in_topos}{} Let $\mathcal{S}$ be a topos and $\mathbf{mon}(\mathcal{S})$ its category of internal monoids. Then $\mathcal{S}$ has a NNO precisely if the forgetful functor $U:\mathbf{mon}(\mathcal{S})\to \mathcal{S}$ has a left adjoint. \end{prop} For a proof see Johnstone (\hyperlink{JT77}{1977},p.190). Furthermore then it is a theorem due to [[Andreas Blass]] (\hyperlink{Blass}{1989}) that $\mathcal{S}$ has a NNO precisely if $\mathcal{S}$ has an [[classifying topos for the theory of objects|object classifier]] $\mathcal{S}[\mathbb{O}]$. A consequence of this, discussed in sec. B4.2 of (Johnstone 2002,I p.431), is that [[classifying topos|classifying toposes]] for [[geometric theories]] over $\mathcal{S}$ exist precisely if $\mathcal{S}$ has a NNO. From a different perspective then, in a topos the existence of free objects over various gadgets like e.g. [[algebraic theory|algebraic theories]] or [[geometric theory|geometric theories]] often hinge on the existence of free monoids, the intuition being that the free monoids permit to construct a free model \emph{syntactically} by providing for the (syntactic) building blocks needed for this process. Notice that algebraic theories can nevertheless have free algebras even if the ambient topos lacks a NNO. This may happen for algebraic theories that have the property that the free algebra on a finite set of generators has a finite carrier e.g. in the topos $FinSet$ of finite sets [[graphic category|free graphic monoids]] exist. \hypertarget{stacks_and_queues}{}\subsection*{{Stacks and queues}}\label{stacks_and_queues} In [[computer science]], lists often appear as \emph{stacks} (not to be confused with the [[stacks]] from higher sheaf theory) and \emph{queues}. Fix a [[monoidal category]] that has [[coproducts]] with the [[unit object]] $I$. Given an [[object]] $A$, an object of \textbf{stacks} on $A$ is an object $S_A$ equipped with [[morphisms]] $push_A\colon S_A \otimes A \to S_A$ and $pop_A\colon S_A \to S_A \otimes A + I$ such that these diagrams commute: \begin{displaymath} \array { S_A \otimes A & & \overset{\iota_{S_A \otimes A,I}}\to & & S_A \otimes A + I \\ & {}_{push_A}\searrow & & \nearrow_{pop_A} & & \searrow^{push_A + id_I} \\ & & S_A & & \underset{\iota_{S_A \otimes A,I}}\to & & S_A + I } \end{displaymath} The idea is that $push_A$ and $pop_A$ are as close to [[inverse morphism|inverses]] as reasonably possible, but $pop_A$ takes us to $S_A \otimes A + I$ rather than to $S_A \otimes A$, because of the empty stack. Queues are a little more complicated. An object of \textbf{queues} on $A$ is an object $Q_A$ equipped with morphisms $ins_A\colon A \otimes Q_A \to Q_A$ (`insert') and $rem_A\colon Q_A \to Q_A \otimes A + I$ (`remove'). These operations are far from inverses; whereas popping a stack returns the last item to be pushed onto it, removing an item from a queue returns the \emph{first} item to have been inserted into it. What are the diagrams for this? I seem to recall that we need a [[distributive category]]; in particular, we need a [[cartesian monoidal category]], so that $\otimes$ is $\times$. But perhaps a [[2-rig]] will be sufficient? \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[classifying topos for the theory of objects]] \item [[natural numbers object]] \item [[arithmetic pretopos]] \item [[tensor algebra]] \item [[cofree coalgebra]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Jean Bénabou]], \emph{Some Remarks on Free Monoids in a Topos} , pp.20-29 in LNM \textbf{1488} Springer Heidelberg 1991. \item [[Andreas Blass]], \emph{Classifying topoi and the axiom of infinity} , Algebra Universalis \textbf{26} (1989) pp.341-345. \item [[Peter Johnstone]], \emph{Topos Theory} , Academic Press New York 1977. (Dover reprint Minneola 2014, chap. 6) \end{itemize} [[!redirects list]] [[!redirects lists]] [[!redirects finite list]] [[!redirects finite lists]] [[!redirects finite sequence]] [[!redirects finite sequences]] [[!redirects concatenation]] [[!redirects cons]] [[!redirects free monoid]] [[!redirects free monoid functor]] [[!redirects free monoid monad]] [[!redirects list monad]] [[!redirects queue]] [[!redirects queues]] [[!redirects list object]] [[!redirects list objects]] \end{document}