\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{free operad} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{explicit_construction}{Explicit construction}\dotfill \pageref*{explicit_construction} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{rooted_tree_operad}{Rooted tree operad}\dotfill \pageref*{rooted_tree_operad} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{free [[operad]]} is [[free functor|free]] on a collection of operations. Given a collection $k$-ary operations-to-be for each $k \in \mathbb{N}$, the free operad on this collection has as $n$-ary operations the collection of all [[trees]] with $n$ leaves equipped with a labelling of each vertex $v$ with a $k$-ary operation, for $k$ the incoming edges to $v$. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $V$ be a [[symmetric monoidal category]]. For $G$ a [[discrete group]], write $V^G$ for the category of objects of $V$ equipped with a $G$-[[action]]. For $V$ symmetric monoidal this is again a [[symmetric monoidal category]] and the [[forgetful functor]] $V^G \to V$ is symmetric monoidal. \begin{defn} \label{}\hypertarget{}{} The category of \textbf{collections} (\hyperlink{BergerMoerdijk}{Berger-Moerdijk}) or \textbf{$\mathbb{S}$-modules} (\hyperlink{GetzlerKapranov}{Getzler-Kapranov}) of $V$, or the category of $V$-[[species]], is \begin{displaymath} V Coll := \prod_{n \in \mathbb{N}} V^{S_n} \,. \end{displaymath} \end{defn} Notice that both $S_0$ and $S_1$ are the trivial group. So a $V$-operad $P$ is a special $V$-collection with extra structure relating its components. This gives an evident [[forgetful functor]] \begin{displaymath} U : V Operad \to V Coll \,. \end{displaymath} \begin{defn} \label{}\hypertarget{}{} The [[free functor]] [[left adjoint]] to this forgetful functor is the the \textbf{free operad functor} \begin{displaymath} F : V Coll \stackrel{\leftarrow}{\to} V Operad : U \,. \end{displaymath} For $C$ a given collection, we call $F(C)$ the operad \emph{free on the collection $C$}. \end{defn} \begin{remark} \label{}\hypertarget{}{} This free/forgetful [[adjunction]] is used to define the [[model structure on operads]] by [[transferred model structure|transfer]]. \end{remark} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{explicit_construction}{}\subsubsection*{{Explicit construction}}\label{explicit_construction} The free operad functor may more explcitly be described as follows (see (\hyperlink{BergerMoerdijk}{Berger-Moerdijk, section 5.8})). \begin{defn} \label{}\hypertarget{}{} Let $\mathbb{T} := Core(\Omega_pl)$ be the [[core]] of the category of planar rooted [[trees]] and \emph{non-planar} morphisms (so the morphisms need not respect the given planar structure). Write \begin{itemize}% \item $t_n \in \Omega_n$ for the $n$-corolla (the tree with a single vertex, $n$ inputs and its unique output root); \item for $T$ any tree with $n$-ary root vertex let $\{T_i\}_{i=1}^n$ be the sub-trees such that $T = t_n \circ (T_1, \cdots, T_n)$. \end{itemize} Then every collection $K \in V Coll$ defines a functor $\bar K : \mathbb{T}^{op} \to V$ by the inductive formula \begin{displaymath} \bar K (|) \coloneqq I \end{displaymath} \begin{displaymath} \bar K(t_n(T_1, \cdots, T_n)) \coloneqq K(n) \otimes \bar K(T_1) \otimes \cdots \bar K(T_n) \,. \end{displaymath} Define moreover the functor \begin{displaymath} \lambda : \mathbb{T} \to Set \end{displaymath} to be the functor that sends a tree to the set of numberings of its leaves, and let $\bar \lambda : \mathbb{T} \to V$ be given by postcomposition with $S \mapsto \coprod_{s \in S} I$, where on the right we have the [[coproduct]] of ${\vert S \vert}$ copies of the tensor unit in the [[monoidal category]] $V$. \end{defn} So for $T$ a tree with $n$ leaves we have \begin{displaymath} \bar \lambda(T) \simeq \coprod_{\sigma \in \Sigma_n} I \,, \end{displaymath} where the coproduct ranges over the elements of the [[symmetric group]] on $n$ elements. \begin{prop} \label{}\hypertarget{}{} The \textbf{free operad} on a collection $K$ is isomorphic to the [[coend]] \begin{displaymath} \bar K \otimes_{\mathbb{T}} \bar \lambda = \int^{T \in \mathbb{T}} \bar K(T) \otimes \bar \lambda(T) \,. \end{displaymath} \end{prop} \begin{remark} \label{}\hypertarget{}{} The groupoid $\mathbb{T}$ is equivalent to the [[disjoint union]] over isomorphism classes of planar trees of the one-object groupoids with morphisms the given [[automorphism group]] \begin{displaymath} \mathbb{T} \simeq \coprod_{[T] \in \pi_0\mathbb{T}} \mathbf{B} Aut(T) \,. \end{displaymath} Therefore the above coend is equivalently \begin{displaymath} \bar K \otimes_{\mathbb{T}} \bar \lambda = \coprod_{[T] \in \pi_0\mathbb{T}} \bar K(T) \otimes_{Aut(T)} \bar \lambda(T) \,. \end{displaymath} \end{remark} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{rooted_tree_operad}{}\subsubsection*{{Rooted tree operad}}\label{rooted_tree_operad} Let $K$ be the collection with $K(0) = \emptyset$ and $K(n) = I$ for $n \gt 0$. The corresponding free operad has as $n$-ary operations all rooted trees with $n$ leaves. And composition of operations is given by grafting of trees. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[free category]], [[free monoid]] \end{itemize} Riemann surfaces operad (TO BE EXPANDED) Deligne-Mumford opeard (TO BE EXPANDED) [[little discs operad]], [[framed little discs operad]] (TO BE EXPANDED) -- See [[Deligne conjecture]] \hypertarget{references}{}\subsection*{{References}}\label{references} A brief remark on free operads is in (1.12) of \begin{itemize}% \item [[Ezra Getzler]], [[Mikhail Kapranov]], \emph{Cyclic operads and cyclic homology}, Conf. Proc. Lect. Notes Geom. Topology IV, Int. Press Camb. (1995), 167--201. \end{itemize} A detailed discussion is in Part II, chapter I, section 1.9 of \begin{itemize}% \item [[Martin Markl]], S. Shnider, [[Jim Stasheff]], \emph{Operads in Algebra, Topology and Physics}, Surveys and Monographs of the Amer. Math. Soc. 96 (2002). \end{itemize} and in section 3 of \begin{itemize}% \item [[Clemens Berger]], [[Ieke Moerdijk]], \emph{The Boardman-Vogt resolution of operads in monoidal model categories} , Topology 45 (2006), 807--849. (\href{http://math.unice.fr/~cberger/BV.pdf}{pdf}) \end{itemize} The [[coend]]-description is given in section 5.8 of \begin{itemize}% \item [[Clemens Berger]], [[Ieke Moerdijk]], \emph{Axiomatic homotopy theory for operads} (\href{http://arxiv.org/abs/math/0206094v3}{arXiv:0206094}) \end{itemize} [[!redirects collection]] [[!redirects collections]] [[!redirects free operads]] \end{document}