\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{function monad} [[!redirects reader monad]] \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{type_theory}{}\paragraph*{{Type theory}}\label{type_theory} [[!include type theory - contents]] \hypertarget{mapping_space}{}\paragraph*{{Mapping space}}\label{mapping_space} [[!include mapping space - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{algebras}{Algebras}\dotfill \pageref*{algebras} \linebreak \noindent\hyperlink{relation_to_the_writer_comonad_and_state_monad}{Relation to the writer comonad and state monad}\dotfill \pageref*{relation_to_the_writer_comonad_and_state_monad} \linebreak \noindent\hyperlink{InTermsOfDependentTypeTheory}{In terms of dependent type theory}\dotfill \pageref*{InTermsOfDependentTypeTheory} \linebreak \noindent\hyperlink{RelationToRandomVariables}{Relation to random variables in probability theory}\dotfill \pageref*{RelationToRandomVariables} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In a [[cartesian closed category]]/[[type theory]] $\mathcal{C}$, given any [[object]]/[[type]] $W$ there is a [[monad]] \begin{displaymath} [W,-] \colon \mathcal{C} \to \mathcal{C} \end{displaymath} given by forming the [[internal hom]] out of $W$, hence the ``space of functions'' out of $W$. This is sometimes called the \emph{function monad}. Its [[unit of a monad]] is given by sending values to [[constant functions]] with that value, and the monad operation is given by evaluating on the [[diagonal]]. In the context of [[monads in computer science]] this monad is called the \emph{reader monad} or \emph{environment monad}. It serves to write programs in which all operations may ``read in'' a state of type $W$ (an ``environment''). \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{algebras}{}\subsubsection*{{Algebras}}\label{algebras} The reader monad does not generally arise from a [[monadic adjunction]]. [[algebra over a monad|Algebras]] may not be easily charcterizable. When $W$ is a 2 element set, algebras correspond to [[idempotent]] [[semigroups]], also known as \emph{rectangular bands}. \hypertarget{relation_to_the_writer_comonad_and_state_monad}{}\subsubsection*{{Relation to the writer comonad and state monad}}\label{relation_to_the_writer_comonad_and_state_monad} In a [[cartesian closed category]]/[[type theory]] $\mathcal{C}$, the reader monad $[W,-] \colon \mathcal{C}\to \mathcal{C}$ is [[right adjoint]] to the [[writer comonad]] $W\times (-)$. Just as the writer comonad is canonically a monad when $W$ is a [[monoid]], so the reader monad is a comonad in that case, and then it is sometimes called the `traced comonad'. The composite of writer comonad followed by [[reader monad]] is the [[state monad]]. \hypertarget{InTermsOfDependentTypeTheory}{}\subsubsection*{{In terms of dependent type theory}}\label{InTermsOfDependentTypeTheory} If the type system is even a [[locally Cartesian closed category]]/[[dependent type theory]] then for each type $W$ there is the [[base change]] [[adjoint triple]] \begin{displaymath} \mathcal{C}_{/W} \stackrel{\overset{\sum_W}{\longrightarrow}}{\stackrel{\overset{W^\ast}{\longleftarrow}}{\underset{\prod_W}{\longrightarrow}}} \mathcal{C} \end{displaymath} In terms of this then the function monad is equivalently the composite \begin{displaymath} \prod_W W^\ast = [W,-] \;\colon\; \mathcal{C} \longrightarrow \mathcal{C} \end{displaymath} of [[context extension]] followed by [[dependent product]]. One may also think of this as being the [[polynomial functor]] associated with the span \begin{displaymath} \ast \leftarrow W \rightarrow \ast \rightarrow \ast \,. \end{displaymath} (Notice that the [[comonad]] obtained by composing the other way around, $W^\ast \prod_W$, is the [[modal operator]] usually called \emph{[[necessity]]}.) \hypertarget{RelationToRandomVariables}{}\subsubsection*{{Relation to random variables in probability theory}}\label{RelationToRandomVariables} It makes sense to think of $[W,-]$ as producing spaces of [[random variables]] (\hyperlink{Verdier14}{Verdier 14}) depending on [[possible worlds]] $w\in W$ (\hyperlink{TorontoMcCarthy10b}{Toronto-McCarthy 10b, slide 24}). \begin{quote}% The intuition behind the Reader monad, for a mathematician, is perhaps stochastic variables. A stochastic variable is a function from a probability space to some other space. So we see a stochastic variable as a monadic value. (\hyperlink{Verdier14}{Verdier 14}) you could interpret this by regarding random variables as reader monad computations. (\hyperlink{TorontoMcCarthy10b}{Toronto-McCarthy 10b, slide 35}) \end{quote} \hyperlink{TorontoMcCarthy10a}{Toronto-McCarthy 10a, 2.2}, \hyperlink{Toronto14}{Toronto 14, 6.2} call the function monad the \emph{random variable idiom}. (While, from the perspective of [[modal type theory]], its siblings $W^\ast \prod_W$ and $W^\ast \sum_W$ may be called \emph{[[necessity]]} and \emph{[[possibility]]}, respectively). In [[Haskell]], the traditional way to model that a program may depend on random states $w \in W$ is to consider not the reader monad but the [[state monad]] $[W,W \times (-)]$. This allows programs not only to depend on the state $w\in W$, but also to change it (for instance to a new number generated by a random number generator). If however one restricts attention to programs that just depend on/read in a random environment $w\in W$ but never change it, then these standard constructs may be reduced from using the state monad to using just the reader monad. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[maybe monad]] \item [[continuation monad]] \item [[writer comonad]], [[state monad]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Wikipedia, \emph{\href{http://en.wikipedia.org/wiki/Monad_%28functional_programming%29#Environment_monad}{Environment monad}}. \item [[Neil Toronto]], [[Jay McCarthy]], \emph{From Bayesian notation to pure Racket, via measuretheoretic probability} , in \emph{Implementation and Application of Functional Languages}, 2010 (\href{http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.298.4274}{web}) \item [[Neil Toronto]], [[Jay McCarthy]], \emph{From Bayesian Notation to Pure Racket}, talk notes 2010 (\href{http://jeapostrophe.github.io/home/static/toronto-2010ifl-slides.pdf}{pdf}) \item [[Neil Toronto]], \emph{Useful Languages for Probabilistic Modeling and Inference}, PhD Thesis, 2014 (\href{http://cs.umd.edu/~ntoronto/papers/toronto-2014diss.pdf}{pdf}, \href{http://cs.umd.edu/~ntoronto/papers/toronto-2014diss-slides.pdf}{slides}) \item [[Olivier Verdier]], \emph{\href{http://www.olivierverdier.com/posts/2014/12/31/reader-writer-monad-comonad/}{The Reader and Writer Monads and Comonads}}, 2014 \end{itemize} A treatment of \emph{opacity} in [[linguistics]] via the function monad \begin{itemize}% \item [[Gianluca Giorgolo]], [[Ash Asudeh]], \emph{Monads as a Solution for Generalized Opacity}, \href{http://users.ox.ac.uk/~cpgl0036/pdf/giorgolo-asudeh-eacl2014.pdf}{pdf} \item [[Gianluca Giorgolo]], [[Ash Asudeh]], \emph{Perspectives}, Semantics and Pragmatics, vol. 9, \href{http://semprag.org/article/view/sp.9.21}{paper} \end{itemize} [[!redirects reader monads]] [[!redirects function monad]] [[!redirects function monads]] [[!redirects environment monad]] [[!redirects environment monads]] \end{document}