\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{function type} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{type_theory}{}\paragraph*{{Type theory}}\label{type_theory} [[!include type theory - contents]] \hypertarget{mapping_space}{}\paragraph*{{Mapping space}}\label{mapping_space} [[!include mapping space - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{overview}{Overview}\dotfill \pageref*{overview} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{as_a_negative_type}{As a negative type}\dotfill \pageref*{as_a_negative_type} \linebreak \noindent\hyperlink{as_a_positive_type}{As a positive type}\dotfill \pageref*{as_a_positive_type} \linebreak \noindent\hyperlink{positive_versus_negative}{Positive versus negative}\dotfill \pageref*{positive_versus_negative} \linebreak \noindent\hyperlink{as_a_special_case_of_the_dependent_product}{As a special case of the dependent product}\dotfill \pageref*{as_a_special_case_of_the_dependent_product} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{relation_to_dependent_product_types}{Relation to dependent product types}\dotfill \pageref*{relation_to_dependent_product_types} \linebreak \noindent\hyperlink{application_in_logic}{Application in logic}\dotfill \pageref*{application_in_logic} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[type theory]] a \emph{function type} $X \to Y$ for two [[types]] $X,Y$ is the [[type]] of [[functions]] from $X$ to $Y$. In a [[model]] of the type theory in [[categorical semantics]], this is an [[exponential object]]. In [[set theory]], it is a [[function set]]. In [[dependent type theory]], it is a special case of a [[dependent product type]]. \hypertarget{overview}{}\subsection*{{Overview}}\label{overview} [[!include function type natural deduction - table]] \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Like any type constructor in type theory, a function type is specified by rules saying when we can introduce it as a type, how to [[term introduction|construct terms]] of that type, how to use or ``[[term elimination|eliminate]]'' terms of that type, and how to compute when we combine the constructors with the eliminators. The [[type formation]] rule to build a function type is easy: \begin{displaymath} \frac{A\colon Type \qquad B \colon Type}{A\to B\colon Type} \end{displaymath} \hypertarget{as_a_negative_type}{}\subsubsection*{{As a negative type}}\label{as_a_negative_type} Function types are almost always defined as a [[negative type]]. In this presentation, primacy is given to the eliminators. The natural eliminator of a function type says that we can [[function application|apply]] it to any input: \begin{displaymath} \frac{f\colon A\to B \qquad a\colon A}{f(a) \colon B} \end{displaymath} The constructor is then determined as usual for a negative type: to construct a term of $A\to B$, we have to specify how it behaves when applied to any input. In other words, we should have a term of type $B$ containing a free variable of type $A$. This yields the usual ``$\lambda$-abstraction'' constructor: \begin{displaymath} \frac{x\colon A\vdash b\colon B}{\lambda x.b\colon A\to B} \end{displaymath} The [[∞-reduction]] rule is the obvious one (the ur-example of all $\beta$-reductions), saying that when we evaluate a $\lambda$-abstraction, we do it by substituting for the bound variable. \begin{displaymath} (\lambda x.b)(a) \;\to_\beta\; b[a/x] \end{displaymath} If we want an [[∞-conversion]] rule, the natural one says that every function is a $\lambda$-abstraction: \begin{displaymath} \lambda x.f(x) \;\to_\eta\; f \end{displaymath} \hypertarget{as_a_positive_type}{}\subsubsection*{{As a positive type}}\label{as_a_positive_type} It is also possible to present function types as a [[positive type]]. However, this requires a stronger metatheory, such as a [[logical framework]]. We use the same constructor ($\lambda$-abstraction), but now the eliminator says that to define an operation using a function, it suffices to say what to do in the case that that function is a lambda abstraction. \begin{displaymath} \frac{(x\colon A \vdash b\colon B) \vdash c\colon C \qquad f\colon A\to B}{funsplit(c,f)\colon C} \end{displaymath} This rule cannot be formulated in the usual presentation of type theory, since it involves a ``higher-order judgment'': the context of the term $c\colon C$ involves a ``term of type $B$ containing a free variable of type $A$''. However, it is possible to make sense of it. In [[dependent type theory]], we need additionally to allow $C$ to depend on $A\to B$. The natural $\beta$-reduction rule for this eliminator is \begin{displaymath} funsplit(c, \lambda x.g) \;\to_\beta c[g/b] \end{displaymath} and its $\eta$-conversion rule looks something like \begin{displaymath} funsplit(c[\lambda x.b / g], f) \;\to_\eta\; c[f/g]. \end{displaymath} Here $g\colon A\to B \vdash c\colon C$ is a term containing a free variable of type $A\to B$. By substituting $\lambda x.b$ for $g$, we obtain a term of type $C$ which depends on ``a term $b\colon B$ containing a free variable $x\colon A$''. We then apply the positive eliminator at $f\colon A\to B$, and the $\eta$-rule says that this can be computed by just substituting $f$ for $g$ in $c$. \hypertarget{positive_versus_negative}{}\subsubsection*{{Positive versus negative}}\label{positive_versus_negative} As usual, the positive and negative formulations are equivalent in a suitable sense. They have the same constructor, while we can formulate the eliminators in terms of each other: \begin{displaymath} \begin{aligned} f(a) &\coloneqq funsplit(b[a/x], f)\\ funsplit(c, f) &\coloneqq c[f(x)/b] \end{aligned} \end{displaymath} The conversion rules also correspond. In dependent type theory, this definition of $funsplit$ only gives us a properly typed dependent eliminator if the negative function type satisfies $\eta$-conversion. As usual, if it satisfies \href{/nlab/show/eta-conversion#Propositional}{propositional eta-conversion} then we can transport along that instead---and conversely, the dependent eliminator allows us to prove propositional $\eta$-conversion. This is the content of Propositions 3.5, 3.6, and 3.7 in \hyperlink{GarnerSDP}{(Garner)}. \hypertarget{as_a_special_case_of_the_dependent_product}{}\subsubsection*{{As a special case of the dependent product}}\label{as_a_special_case_of_the_dependent_product} In [[dependent type theory]] a function type $A \to B$ is the special case the [[dependent product]] over $a : A$ for the special case that $B$ is regarded as an $A$-[[dependent type]] that actually happens to be $A$-independent \begin{displaymath} A \to B =_{def} \prod_{a : A} B \,. \end{displaymath} In [[categorical semantics]] this is the statement that a [[section]] of a product [[projection]] $A \times B \to A$ is equivalently just a morphism $A \to B$. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{relation_to_dependent_product_types}{}\subsubsection*{{Relation to dependent product types}}\label{relation_to_dependent_product_types} A function type is the special case of a [[dependent product type]] for the case where the [[dependent type]] does not actually depend. \begin{displaymath} (X \to A) = \prod_{x \colon X} A \,. \end{displaymath} See also at \emph{[[function monad]]}. \hypertarget{application_in_logic}{}\subsubsection*{{Application in logic}}\label{application_in_logic} In [[logic]], functions types express [[implication]]. More precisely, for $\phi, \psi$ two [[propositions]], under [[propositions as types]] the [[implication]] $\phi \Rightarrow \psi$ is the function type $\phi \to \psi$ (or rather the [[bracket type]] of that if one wishes to force this to be of type $Prop$ again ). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[function application]] \item [[function monad]] \item [[dependent product type]] \item [[lambda calculus]] \item [[implication]], [[linear implication]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} A textbook account in the context of [[programming languages]] is in section III of \begin{itemize}% \item [[Robert Harper]], \emph{[[Practical Foundations for Programming Languages]]} \end{itemize} See also \begin{itemize}% \item [[Richard Garner]], \emph{On the strength of dependent products in the type theory of Martin-L\"o{}f}. \end{itemize} [[!redirects function type]] [[!redirects function types]] \end{document}