\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{functorial factorization} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{factorization_systems}{}\paragraph*{{Factorization systems}}\label{factorization_systems} [[!include factorization systems - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{concrete_explicit}{Concrete explicit}\dotfill \pageref*{concrete_explicit} \linebreak \noindent\hyperlink{abstract_version}{Abstract version}\dotfill \pageref*{abstract_version} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{Properties}{Properties}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{enriched_functorial_factorizations}{Enriched functorial factorizations}\dotfill \pageref*{enriched_functorial_factorizations} \linebreak \noindent\hyperlink{equivalence_to_pointed_endofunctors}{Equivalence to pointed endofunctors}\dotfill \pageref*{equivalence_to_pointed_endofunctors} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \textbf{functorial factorization} is a structure on a category that factors any morphism into a composite of two morphisms, in a way that depends functorially on commutative squares. Functorial factorizations play a prominent role in [[model category]] theory. On the one hand, many constructions there do rely on the factorizations into (acyclic) [[cofibrations]] and (acyclic) [[fibrations]] to be functorial, while on the other hand via the [[small object argument]] many examples of model categories do in fact carry a functorial factorization. (As a result, some authors include functorial factorization in the axioms of a model category right away.) Functorial factorizations also play an important role as an ingredient in [[algebraic weak factorization systems]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{concrete_explicit}{}\subsubsection*{{Concrete explicit}}\label{concrete_explicit} \begin{udefn} A \textbf{functorial factorization} on a category $\mathcal{C}$ is a way of assigning to any arrow $f$ in $\mathcal{C}$ a pair of composable arrows $f_L, f_R$ such that $f = f_R \circ f_L$, together with for any [[commuting square]] \begin{displaymath} \itexarray{ & \overset{h}{\longrightarrow} \\ {}^{\mathllap{f}}\downarrow && \downarrow^{\mathrlap{g}} \\ & \overset{k}{\longrightarrow} } \end{displaymath} a morphism $E(h,k)$ completing their factorizations $f = f_R \circ f_L$ and $g = g_R \circ g_L$ to a further [[commuting diagram]] \begin{displaymath} \itexarray{ & \overset{h}{\longrightarrow} \\ {}^{\mathllap{f_L}}\downarrow && \downarrow^{\mathrlap{g_L}} \\ & \overset{E(h,k)}{\longrightarrow} \\ {}^{\mathllap{f_R}}\downarrow && \downarrow^{\mathrlap{g_R}} \\ & \overset{k}{\longrightarrow} } \,, \end{displaymath} in a way that depends functorially on the given commutative square, i.e. $E(h_1\circ h_2,k_1\circ k_2) = E(h_1,k_1) \circ E(h_2,k_2)$. \end{udefn} \hypertarget{abstract_version}{}\subsubsection*{{Abstract version}}\label{abstract_version} Write $\Delta[1] = \{0 \to 1\}$ and $\Delta[2] = \{0 \to 1 \to 2\}$ for the [[ordinal numbers]], regarded as [[posets]] and hence as [[categories]]. The [[arrow category]] $Arr(\mathcal{C})$ is equivalently the [[functor category]] $\mathcal{C}^{\Delta[1]} \coloneqq Funct(\Delta[1], \mathcal{C})$, while $\mathcal{C}^{\Delta[2]}\coloneqq Funct(\Delta[2], \mathcal{C})$ has as objects pairs of composable morphisms in $\mathcal{C}$. There are three injective functors $\delta_i \colon [1] \rightarrow [2]$, where $\delta_i$ omits the index $i$ in its image. By precomposition, this induces [[functors]] $d_i \colon \mathcal{C}^{\Delta[2]} \longrightarrow \mathcal{C}^{\Delta[1]}$. Here \begin{itemize}% \item $d_1$ sends a pair of composable morphisms to their [[composition]]; \item $d_2$ sends a pair of composable morphisms to the first morphism; \item $d_0$ sends a pair of composable morphisms to the second morphism. \end{itemize} \begin{defn} \label{FunctorialFactorization}\hypertarget{FunctorialFactorization}{} For $\mathcal{C}$ a [[category]], a \textbf{functorial factorization} of the morphisms in $\mathcal{C}$ is a [[functor]] \begin{displaymath} fact \;\colon\; \mathcal{C}^{\Delta[1]} \longrightarrow \mathcal{C}^{\Delta[2]} \end{displaymath} which is a [[section]] of the [[composition]] functor $d_1 \;\colon\; \mathcal{C}^{\Delta[2]}\to \mathcal{C}^{\Delta[1]}$. \end{defn} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item Not all [[weak factorization systems]] are functorial, although most are. This includes those produced by the [[small object argument]], with due care, and also all [[algebraic weak factorization systems]]. \item All [[orthogonal factorization systems]] are automatically functorial. \end{itemize} \hypertarget{Properties}{}\subsection*{{Properties}}\label{Properties} \hypertarget{enriched_functorial_factorizations}{}\subsubsection*{{Enriched functorial factorizations}}\label{enriched_functorial_factorizations} Sufficient conditions in [[enriched category theory]] (in particular [[enriched model category]]-theory) for functorial factorization to exist as an [[enriched functor]] is discussed in \hyperlink{Hirschhorn02}{Hirschhorn 02, Theorem 4.3.8}, \hyperlink{Shulman06}{Shulman 06, Prop. 24.2} \hypertarget{equivalence_to_pointed_endofunctors}{}\subsubsection*{{Equivalence to pointed endofunctors}}\label{equivalence_to_pointed_endofunctors} \begin{uprop} The following are equivalent: \begin{enumerate}% \item A functorial factorization on $\mathcal{C}$. \item A [[pointed endofunctor]] $R$ of $\mathcal{C}^{\Delta[1]}$ such that $cod : \mathcal{C}^{\Delta[1]} \to \mathcal{C}$ is a strict morphism of pointed endofunctors from $R$ to $Id_{\mathcal{C}}$, i.e. $cod \circ R = cod$ and $cod$ maps the point $Id_{\mathcal{C}^{\Delta[1]}}\to R$ to the identity map of $Id_{\mathcal{C}}$. (This is called a \textbf{pointed endofunctor over $cod$}.) \item Dually, a copointed endofunctor $L$ of $\mathcal{C}^{\Delta[1]}$ under $dom$. \end{enumerate} \end{uprop} \begin{proof} A endofunctor $R$ of $\mathcal{C}^{\Delta[1]}$ maps every morphism $f$ in $\mathcal{C}$ to a morphism $f_R$, in a functorial way. A point of such an endofunctor assigns to each $f$ a pair of morphisms $f_L, f_M$ such that $f_R \circ f_L = f_M\circ f$, naturally with respect to commutative squares. To say $cod \circ R = cod$ means that $f_R$ has the same codomain as $f$, and to say that $cod$ respects the points says that $f_M$ is an identity. Thus, $f = f_R \circ f_L$ is a factorization. For functoriality, the functoriality of $R$ gives the commutative square $k \circ f = f_R \circ E(h,k)$ and the functoriality of $E(-,-)$, while the naturality of $(-)_L$ gives the commutative square $E(h,k) \circ f = f_L \circ h$. The converse and dual are straightforward. \end{proof} An [[algebraic weak factorization system]] is a functorial factorization together with compatible enhancements of these endofunctors to a monad and comonad. This can often be detected with the help of a [[composition law for factorizations]]. \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Philip Hirschhorn]], \emph{Model Categories and Their Localizations}, AMS Math. Survey and Monographs Vol 99 (2002) (\href{http://www.ams.org/bookstore?fn=20&arg1=whatsnew&item=SURV-99}{AMS}, \href{http://www.gbv.de/dms/goettingen/360115845.pdf}{pdf toc}, \href{http://www.maths.ed.ac.uk/~aar/papers/hirschhornloc.pdf}{pdf}) \item [[Michael Shulman]], \emph{Homotopy limits and colimits and enriched homotopy theory} (\href{https://arxiv.org/abs/math/0610194}{arXiv:math/0610194}) \end{itemize} [[!redirects functorial factorizations]] [[!redirects functorial factorization system]] [[!redirects functorial factorization systems]] \end{document}