\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{fundamental group} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{group_theory}{}\paragraph*{{Group Theory}}\label{group_theory} [[!include group theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{naturality}{Naturality}\dotfill \pageref*{naturality} \linebreak \noindent\hyperlink{RelationToSingularHomology}{Relation to singular homology}\dotfill \pageref*{RelationToSingularHomology} \linebreak \noindent\hyperlink{relation_to_universal_covers_and_galois_groups}{Relation to universal covers and Galois groups}\dotfill \pageref*{relation_to_universal_covers_and_galois_groups} \linebreak \noindent\hyperlink{generalizations}{Generalizations}\dotfill \pageref*{generalizations} \linebreak \noindent\hyperlink{nonlocally_nice_spaces_and_generalised_spaces}{Non-locally `nice' spaces and `generalised' spaces}\dotfill \pageref*{nonlocally_nice_spaces_and_generalised_spaces} \linebreak \noindent\hyperlink{proper_fundamental_groups}{Proper fundamental groups}\dotfill \pageref*{proper_fundamental_groups} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{related_concept}{Related concept}\dotfill \pageref*{related_concept} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{fundamental group} $\pi_1(X,x)$ of a [[pointed object|pointed]] [[topological space]] $(X,x)$ is the group of based [[homotopy classes]] of [[loops]] at $x$, with multiplication defined by concatenation (following one path by another). This is also called \emph{the first [[homotopy group]]} of $X$. The notion of \emph{fundamental group} $\pi_1(X,x)$ generalises in one direction to the [[fundamental groupoid]] $\Pi_1(X)$, or in another direction to the [[homotopy groups]] $\pi_n(X,a)$ for $n \in \mathbb{N}$. Both of this is contained within the [[fundamental ∞-groupoid]] $\Pi(X)$. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} For $X$ a [[topological space]] and $x : * \to X$ a [[point]]. A [[loop space|loop]] in $X$ based at $x$ is a [[continuous function]] \begin{displaymath} \gamma : \Delta^1 \to X \end{displaymath} from the topological 1-[[simplex]], such that $\gamma(0) = \gamma(1) = x$. A \emph{based [[homotopy]]} between two loops is a [[homotopy]] \begin{displaymath} \itexarray{ \Delta^1 \\ \downarrow^{\mathrlap{(id,\delta_0)}} & \searrow^{\mathrlap{f}} \\ \Delta^1 \times \Delta^1 &\stackrel{\eta}{\to}& X \\ \uparrow^{\mathrlap{(id,\delta_1)}} & \nearrow_{\mathrlap{g}} \\ \Delta^1 } \end{displaymath} such that $\eta(0,-) = \eta(1,-) = x$. \end{defn} \begin{prop} \label{}\hypertarget{}{} This notion of based homotopy is an [[equivalence relation]]. \end{prop} \begin{proof} This is directly checked. It is also a special case of the general discussion at \emph{[[homotopy]]}. \end{proof} \begin{definition} \label{Concatenation}\hypertarget{Concatenation}{} Given two loops $\gamma_1, \gamma_2 : \Delta^1 \to X$, define their \textbf{concatenation} to be the loop \begin{displaymath} \gamma_2 \cdot \gamma_1 : t \mapsto \left\{ \itexarray{ \gamma_1(2 t) & ( 0 \leq t \leq 1/2 ) \\ \gamma_2(2 (t-1/2)) & (1/2 \leq t \leq 1) } \right. \,. \end{displaymath} \end{definition} \begin{prop} \label{GroupStructure}\hypertarget{GroupStructure}{} Concatenation of loops respects based homotopy classes where it becomes an [[associativity|associative]], [[unital]] binary pairing with [[inverses]], hence the product in a [[group]]. \end{prop} \begin{remark} \label{}\hypertarget{}{} See also at \emph{[[path groupoid]]} for similar constructions. \end{remark} \begin{defn} \label{}\hypertarget{}{} For $X$ a topological space and $x \in X$ a point, the set of based homotopy equivalence classes of based loops in $X$ equipped with the group structure from prop. \ref{GroupStructure} is the \textbf{fundamental group} or \textbf{first [[homotopy group]]} of $(X,x)$, denoted \begin{displaymath} \pi_1(X,x) \in Grp \,. \end{displaymath} \end{defn} Hence if we write $[\gamma] \in p_1(X,x)$ for the based homotopy class of a loop $p$, then then group operation is \begin{displaymath} [\gamma_1] \cdot [\gamma_2] \coloneqq [\gamma_1 \cdot \gamma_2] \,. \end{displaymath} \begin{defn} \label{SimplyConnectedSpace}\hypertarget{SimplyConnectedSpace}{} A [[topological space]] whose fundamental group is trivial is called a \emph{[[simply connected topological space]]}. \end{defn} \begin{defn} \label{EMSpace}\hypertarget{EMSpace}{} Conversely, a topological space whose only non-trivial [[homotopy group]] is the fundamental group is called an [[Eilenberg-MacLane space]] denoted $K(\pi_1(X), 1)$. \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{naturality}{}\subsubsection*{{Naturality}}\label{naturality} \begin{prop} \label{}\hypertarget{}{} If a topological space $X$ is path-[[connected space]], then all of the fundamental groups $\pi_1(X,x)$ are [[isomorphism|isomorphic]], for all choices of base points $x \in X$. \end{prop} \begin{proof} For $x_0, x_1 \in X$ any two basepoints, there is by assumption a path connecting them, hence a [[continuous function]] \begin{displaymath} p : \Delta^1 \to X \end{displaymath} such that $p(0) = x_0$ and $p(1) = x_1$. Write $\bar p \coloneqq (p(1-(-)))$ for the same path with the orientation reversed. Then for $\gamma_0$ any loop based at $x_0$, the concatenation $[ p \cdot (\gamma_0 \cdot \bar p) ]$, def. \ref{Concatenation} yield a loop based at $x_1$ (obtained from $[\gamma_0]$ by [[conjugation]] with $[p]$). It is immediate to check that this induces an [[isomorphism]] \begin{displaymath} Ad_{[p]} : \pi_1(X,x_0) \to \pi_1(X,x_1) \,. \end{displaymath} \end{proof} \begin{remark} \label{}\hypertarget{}{} Therefore one sometimes loosely speaks of `the' fundamental group of a connected space. But beware that the isomorphism in the above construction is not unique. Therefore forming fundamental groups is not a [[functor]] on connected spaces. \end{remark} \begin{prop} \label{}\hypertarget{}{} It is, however, a functor on [[pointed object|pointed topological spaces]]: $\pi_1(-) :$ [[Top]] ${}^{*/} \to$ [[Grp]]. \end{prop} \hypertarget{RelationToSingularHomology}{}\subsubsection*{{Relation to singular homology}}\label{RelationToSingularHomology} The fundamental group is in general non-abelian (i.e. is not an [[abelian group]]), the \hyperlink{Examples}{Examples} below. For a connected topological space $X$, its \emph{[[abelianization]]} is equivalent to the first [[singular homology]] group \begin{displaymath} \pi_1(X,x)^{ab} \simeq H_1(X) \,. \end{displaymath} See at \emph{\href{singular%20homology#RelationToHomotopyGroups}{singular homology -- Relation to homotopy groups}} for more on this. \hypertarget{relation_to_universal_covers_and_galois_groups}{}\subsubsection*{{Relation to universal covers and Galois groups}}\label{relation_to_universal_covers_and_galois_groups} There is a relation to [[universal cover|universal covers]]: Under suitable conditions the group of cover automorphisms of a universal cover is isomorphic to the fundamental group of the covered space. This is the topic of the \emph{[[étale fundamental group]]}, also referred to at \emph{[[Chevalley fundamental group]]}, see there for more. In particular in [[algebraic geometry]] and [[arithmetic geometry]] this essentially identifies the concept of fundamental group with that of \emph{[[Galois groups]]}. For this reason one also speaks of the \emph{[[algebraic fundamental group]]} in this context. See at \emph{[[Galois theory]]} for more on this. See also at \emph{[[link between Galois theory and fundamental groups]]}. In [[Grothendieck's Galois theory]], the role of the basepoint is replaced by considering a `fibre functor' $F:\mathcal{C}\to Sets$ or to $FinSets$, where $\mathcal{C}$ is the category of coverings of the given space. This theory extends to other situations and the term [[algebraic fundamental group]] is used in particular for the case of [[scheme]]s (of a suitable type); see (SGA1). \hypertarget{generalizations}{}\subsection*{{Generalizations}}\label{generalizations} \hypertarget{nonlocally_nice_spaces_and_generalised_spaces}{}\subsubsection*{{Non-locally `nice' spaces and `generalised' spaces}}\label{nonlocally_nice_spaces_and_generalised_spaces} The definition of fundamental group in terms of homotopy classes of loops at a base point does not work well for the spaces that occur in [[algebraic geometry]], nor for many spaces considered in analysis as there may be very few loops. For instance, for a [[scheme]] there are in general very few paths, and [[Grothendieck]] gave a definition of a fundamental group in SGA1 which is closely related to the [[Galois group|Galois groups]] of number theory, but in cases where both the path-based group and this [[algebraic fundamental group]] make sense, the algebraic form tends to be related to the [[profinite completion of a group|profinite completion]] of the topological fundamental group; see the example in that entry. A similar type of construction gives the [[fundamental group of a topos]]. Other related forms include a ech version of the fundamental group used in shape theory, and linked to ech homology groups of a compact space. The notion of fundamental group generalizes to that of [[fundamental groupoid]] in both the loop based theory and in [[Grothendieck's Galois theory]] as described in [[SGA1]]. In this form it has been used to give generalisations for simplicial profinite spaces in work by Quick and to [[pro-spaces]] in work of Isaksen. \hypertarget{proper_fundamental_groups}{}\subsubsection*{{Proper fundamental groups}}\label{proper_fundamental_groups} In the context of [[proper homotopy theory]] there are two related fundamental groups for single ended spaces. \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} \begin{example} \label{EuclideanSpaceFundamentalGroup}\hypertarget{EuclideanSpaceFundamentalGroup}{} \textbf{(Euclidean space is [[simply connected topological space|simply connected]])} For $n \in \mathbb{N}$, let $\mathbb{R}^n$ be the $n$-dimensional [[Euclidean space]] with its [[metric topology]]. Then for every point $x \in \mathbb{R}^n$ the fundamental group is trivial: \begin{displaymath} \pi_1(\mathbb{R}^n, x) = 1 \,. \end{displaymath} \end{example} \begin{proof} Let \begin{displaymath} \gamma \;\colon\; [0,1] \longrightarrow \mathbb{R}^n \end{displaymath} be [[loop]] at $x$, hence a [[continuous function]] with $\gamma(0) = x$ and $\gamma(1) = x$. Using the [[real vector space]] structure on $\mathbb{R}^n$, we may define the function \begin{displaymath} \itexarray{ [0,1] \times [0,1] &\overset{\eta}{\longrightarrow}& \mathbb{R}^n \\ (t,s) &\mapsto& x + s (\gamma(t) - x) } \,. \end{displaymath} This is a [[continuous function]], since it is the composite of the continuous function $(id_{[0,1]} \times \gamma) \;\colon\; (t,s) \mapsto (\gamma(t),s)$ (which is continuous as the [[product topological space|product]] of two continuous functions) and the function $(v,s) \mapsto x + s ( v - x )$ (which is continuous since [[polynomials are continuous]]). Moreover, by construction we have \begin{displaymath} \eta(-,1) = \gamma(-) \phantom{AAAA} \eta(-,0) = const_x \,. \end{displaymath} Therefore this is a [[homotopy]] from $\gamma$ to the constant loop at $x$. \end{proof} \begin{example} \label{}\hypertarget{}{} By definition \ref{SimplyConnectedSpace}, the fundamental group of every [[simply connected topological space]] is trivial. \end{example} \begin{example} \label{}\hypertarget{}{} The [[fundamental group of the circle is the integers]]: \begin{displaymath} \pi_1(S^1) \simeq \mathbb{Z} \,. \end{displaymath} \end{example} \begin{remark} \label{}\hypertarget{}{} An instructive formalization of this basic statement in [[homotopy type theory]] is in (\hyperlink{Shulman}{Shulman}). \end{remark} \begin{example} \label{}\hypertarget{}{} By definition \ref{EMSpace}, the fundamental group of any [[Eilenberg-MacLane space]] $K(G,1)$ is $G$: $\pi_1(K(G,1)) = G$. \end{example} \hypertarget{related_concept}{}\subsection*{{Related concept}}\label{related_concept} \begin{itemize}% \item [[fundamental theorem of covering spaces]] \item [[winding number]] \item [[algebraic fundamental group]] \item [[anabelian geometry]] \item [[Chevalley fundamental group]] \item [[etale homotopy]] \item [[Grothendieck's Galois theory]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Jesper Møller]], \emph{The fundamental group and covering spaces} (\href{http://www.math.ku.dk/~moller/f03/algtop/notes/covering.pdf}{pdf}) \item Marcelo Aguilar, [[Samuel Gitler]], Carlos Prieto, section 2.5 of \emph{Algebraic topology from a homotopical viewpoint}, Springer (2002) (\href{http://tocs.ulb.tu-darmstadt.de/106999419.pdf}{toc pdf}) \end{itemize} Discussion from the point of view of [[Galois theory]] is in \begin{itemize}% \item [[Luis Javier Hernández-Paricio]], \emph{Fundamental pro-groupoids and covering projections}(\href{http://matwbn.icm.edu.pl/ksiazki/fm/fm156/fm15611.pdf}{pdf}) \end{itemize} Isaksen's work is \begin{itemize}% \item [[D. C. Isaksen]], \emph{A model structure on the category of pro-simplicial sets}, Trans. Amer. Math. Soc., 353, (2001), 2805--2841 \end{itemize} whilst Quick's is in \begin{itemize}% \item [[G. Quick]], \emph{Profinite homotopy theory}, Documenta Mathematica, 13, (2008), 585--612. \end{itemize} Proof that the [[fundamental group of the circle is the integers]] in [[homotopy type theory]] is in \begin{itemize}% \item [[Daniel Licata]], [[Michael Shulman]], \emph{Calculating the Fundamental Group of the Circle in Homotopy Type Theory}, (\href{https://arxiv.org/abs/1301.3443}{arXiv:1301.3443}) \item [[UF-IAS-2012|Univalent Foundations Project]], section 8.1 of \emph{[[Homotopy Type Theory -- Univalent Foundations of Mathematics]]} \end{itemize} the HoTT-[[Coq]]-code is at \begin{itemize}% \item [[Mike Shulman]], \emph{\href{https://github.com/HoTT/HoTT/blob/master/Coq/HIT/Pi1S1.v}{P1S1.v}} \end{itemize} [[!redirects fundamental groups]] \end{document}