\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{fundamental group of the circle is the integers} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{statement}{Statement}\dotfill \pageref*{statement} \linebreak \noindent\hyperlink{proofs}{Proofs}\dotfill \pageref*{proofs} \linebreak \noindent\hyperlink{ProofInTopologicalHomotopyTheory}{In topological point-set homotopy theory}\dotfill \pageref*{ProofInTopologicalHomotopyTheory} \linebreak \noindent\hyperlink{ProofInHomotopyTypeTheory}{In homotopy type theory}\dotfill \pageref*{ProofInHomotopyTypeTheory} \linebreak \noindent\hyperlink{Consequences}{Consequences}\dotfill \pageref*{Consequences} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{in_topological_homotopy_theory}{In topological homotopy theory}\dotfill \pageref*{in_topological_homotopy_theory} \linebreak \noindent\hyperlink{in_homotopy_type_theory_2}{In homotopy type theory}\dotfill \pageref*{in_homotopy_type_theory_2} \linebreak \hypertarget{statement}{}\subsection*{{Statement}}\label{statement} A basic statement in [[homotopy theory]]: \begin{prop} \label{}\hypertarget{}{} \textbf{(fundamental group of the circle is the integers)} The [[fundamental group]] $\pi_1$ of the [[circle]] $S^1$ is the additive group of [[integers]]: \begin{displaymath} \pi_1(S^1) \overset{\simeq}{\longrightarrow} \mathbb{Z} \end{displaymath} and the isomorphism is given by assigning [[winding number]]. \end{prop} Here in the context of [[topological homotopy theory]] the [[circle]] $S^1$ is the [[topological subspace]] $S^1 = \{x \in \mathbb{R}^2 \,\vert\, x_1^2 + x_2^2 = 1 \} \subset \mathbb{R}^2$ of the [[Euclidean plane]] with its [[metric topology]], or any [[topological space]] of the same [[homotopy type]]. More generally, the circle in question is, as a [[homotopy type]], the [[homotopy pushout]] \begin{displaymath} S^1 \simeq \ast \underset{\ast \sqcup \ast}{\coprod} \ast \,, \end{displaymath} hence the [[homotopy type]] with the [[universal property]] that it makes a homotopy commuting diagram of the form \begin{displaymath} \itexarray{ \ast \sqcup \ast &\longrightarrow& \ast \\ \downarrow &\swArrow& \downarrow \\ \ast &\longrightarrow& S^1 } \,. \end{displaymath} \hypertarget{proofs}{}\subsection*{{Proofs}}\label{proofs} \hypertarget{ProofInTopologicalHomotopyTheory}{}\subsubsection*{{In topological point-set homotopy theory}}\label{ProofInTopologicalHomotopyTheory} We discuss the classical proof in [[point-set topology|point-set]] [[topological homotopy theory]]. \begin{proof} The [[universal covering space]] $\widehat{S^1}$ of $S^1$ is the [[real line]] (by \href{universal+covering+space#UniversalCoveringOfCircleRealLine}{this example}): \begin{displaymath} p \coloneqq (cos(2 \pi(-)), \sin(2 \pi(-))) \;\colon\; \mathbb{R}^1 \longrightarrow S^1 \,. \end{displaymath} Since the [[circle]] is [[locally path-connected topological space|locally path-connected]] (\href{locally+path-connected+space#LocallyPathConnectedCircle}{this example}) and [[semi-locally simply connected topological space|semi-locally simply connected]] (\href{semi-locally+simply+connected+topological+space#LocallySimplyConnectedCircle}{this example}) the [[fundamental theorem of covering spaces]] applies and gives that the [[automorphism group]] of $\mathbb{R}^1$ over $S^1$ equals the automorphism group of its [[monodromy]] [[permutation representation]]: \begin{displaymath} Aut_{Cov(S^1)}(\mathbb{R}^1) \;\simeq\; Aut_{\pi_1(S^1) Set}(Fib_{S^1}) \,. \end{displaymath} Moreover, as a corollary of the [[fundamental theorem of covering spaces]] we have that the [[monodromy]] representation of a [[universal covering space]] is given by the [[action]] of the [[fundamental group]] $\pi_1(S)$ on itself (\href{universal+covering+space#ReconstructCoveringForFreeAndTransitiveMonodromyRepresentation}{this prop.}). But the [[automorphism group]] of any group regarded as an [[action]] on itself by left multiplication is canonically isomorphic to that group itself (by \href{permutation+representation#AutomorphismsOfGAsGTorsor}{this example}), hence we have \begin{displaymath} Aut_{{\pi_1(S^1)} Set}(Fib_{S^1}) \;\simeq\; Aut_{{\pi_1(S^1)} Set}( \pi_1(S^1) ) \;\simeq\; \pi_1(S^1) \,. \end{displaymath} Therefore to conclude the proof it is now sufficient to show that \begin{displaymath} \mathrm{Aut}_{Cov(S^1)}(\mathbb{R}^1) \simeq \mathbb{Z} \,. \end{displaymath} \# To that end, consider a [[homeomorphism]] of the form \begin{displaymath} \itexarray{ \mathbb{R}^1 && \underoverset{\simeq}{f}{\longrightarrow} && \mathbb{R}^1 \\ & {}_{\mathllap{p}}\searrow && \swarrow_{\mathrlap{p}} \\ && S^1 } \,. \end{displaymath} Let $s \in S^1$ be any point, and consider the restriction of $f$ to the fibers over the [[complement]]: \begin{displaymath} \itexarray{ p^{-1}(S^1 \setminus \{s\}) && \underoverset{\simeq}{f}{\longrightarrow} && p^{-1}(S^1 \setminus \{s\}) \\ & {}_{\mathllap{p}}\searrow && \swarrow_{\mathrlap{p}} \\ && S^1 \setminus \{s\} } \,. \end{displaymath} By the [[covering space]] property we have (via \href{universal+covering+space#UniversalCoveringOfCircleRealLine}{this example}) a [[homeomorphism]] \begin{displaymath} p^{-1}(S^1 \setminus \{s\}) \simeq (0,1) \times Disc(\mathbb{Z}) \,. \end{displaymath} Therefore, up to homeomorphism, the restricted function is of the form \begin{displaymath} \itexarray{ (0,1)\times Disc(\mathbb{Z}) && \underoverset{\simeq}{f}{\longrightarrow} && (0,1) \times Disc(\mathbb{Z}) \\ & {}_{pr_1}\searrow && \swarrow_{pr_1} \\ && (0,1) } \,. \end{displaymath} By the [[universal property]] of the [[product topological space]] this means that $f$ is equivalently given by its two components \begin{displaymath} (0,1) \times Disc(\mathbb{Z}) \overset{pr_1 \circ f}{\longrightarrow} (0,1) \phantom{AAAA} (0,1) \times Disc(\mathbb{Z}) \overset{pr_2 \circ f}{\longrightarrow} Disc(\mathbb{Z}) \,. \end{displaymath} By the [[commuting diagram|commutativity]] of the above [[diagram]], the first component is fixed to be $pr_1$. Moreover, by the fact that $Disc(\mathbb{Z})$ is a [[discrete space]] it follows that the second component is a [[locally constant function]] (by \href{locally+constant+function#LocallyConstantFunctionIntoDiscreteSpace}{this example}). Therefore, since the [[product space]] with a [[discrete space]] is a [[disjoint union space]] (via \href{product+topological+space#ProductWithDiscreteFiniteTopologicalSpace}{this example}) \begin{displaymath} (0,1) \times Disc(\mathbb{Z}) \simeq \underset{n \in \mathbb{Z}}{\sqcup}(0,1) \end{displaymath} and since the disjoint summands $(0,1)$ are [[connected topological spaces]] (\href{connected+space#ConnectedSubspacesOfRealLineAreTheIntervals}{this example}), it follows that the second component is a [[constant function]] on each of these summands (by \href{connected+space#LocallyConstantFunctionsOnConnectedSpaces}{this example}). Finally, since every function out of a [[discrete topological space]] is continuous, it follows in conclusion that the restriction of $f$ to the fibers over $S^1 \setminus \{s\}$ is entirely encoded in an [[endofunction]] of the set of [[integers]] \begin{displaymath} \phi \;\colon\; \mathbb{Z} \to \mathbb{Z} \end{displaymath} by \begin{displaymath} \itexarray{ S^1 \setminus \{s\} \times Disc(\mathbb{Z}) &\overset{f}{\longrightarrow}& S^1 \setminus \{s\} \times Disc(\mathbb{Z}) \\ (t,k) &\mapsto& (t, \phi(k)) } \,. \end{displaymath} Now let $s' \in S^1$ be another point, distinct from $s$. The same analysis as above applies now to the restriction of $f$ to $S^1 \setminus \{s'\}$ and yields a function \begin{displaymath} \phi' \;\colon\; \mathbb{Z} \longrightarrow \mathbb{Z} \,. \end{displaymath} Since \begin{displaymath} \left\{ p^{-1}(S^1 \setminus \{s\}) \subset \mathbb{R}^1 \,,\, p^{-1}(S^1 \setminus \{s'\}) \subset \mathbb{R}^1 \right\} \end{displaymath} is an [[open cover]] of $\mathbb{R}^1$, it follows that $f$ is unqiuely fixed by its restrictions to these two subsets. Now unwinding the definition of $p$ shows that the condition that the two restrictions coincide on the intersection $S^1 \setminus \{s,s'\}$ implies that there is $n \in \mathbb{Z}$ such that $\phi(k) = k+ n$ and $\phi'(k) = k+n$. This shows that $Aut_{Cov(S^1)}(\mathbb{R}^1) \simeq \mathbb{Z}$. \end{proof} \hypertarget{ProofInHomotopyTypeTheory}{}\subsubsection*{{In homotopy type theory}}\label{ProofInHomotopyTypeTheory} There is also a purely synthetic a proof in [[homotopy type theory]] (\hyperlink{LicataShulman13}{Licata-Shulman 13}, \hyperlink{UF}{UF, corollary 8.1.10}). \hypertarget{Consequences}{}\subsection*{{Consequences}}\label{Consequences} \begin{example} \label{CoveringOfCircleAndConjugacyClassesOfSymmetricGroup}\hypertarget{CoveringOfCircleAndConjugacyClassesOfSymmetricGroup}{} \textbf{([[isomorphism classes]] of [[covering spaces|coverings]] of the circle are [[conjugacy classes]] in the [[symmetric group]])} The [[monodromy]] construction assigns to an [[isomorphism class]] of covering spaces over the [[circle]] $S^1$ with [[fibers]] consisting of $n$ elements [[conjugacy classes]] of elements the [[symmetric group]] $\Sigma(n)$: \begin{displaymath} \left \{ \itexarray{ \text{isomorphism classes of} \\ \text{finite covering spaces } \\ \text{over the circle} } \right\} \;\simeq\; \left\{ \itexarray{ \text{conjugacy classes of} \\ \text{elements of a symmetric group} } \right\} \end{displaymath} To see this, we may without restriction (via \href{groupoid#representation#GroupoidRepresentationsAreProductsOfGroupRepresentations}{this prop.}) choose a basepoint $x \in S^1$ so that a monodromy representation is equivalently a groupoid morphism of the form \begin{displaymath} \rho \;\colon\; B \mathbb{Z} \overset{\simeq}{\longrightarrow} B \pi_1(S^1,x) \overset{\rho}{\longrightarrow} Core(Set) \,. \end{displaymath} Since $\mathbb{Z}$ is the [[free abelian group]] on a single generator, such as morphism is uniquely determined by the image of $1 \in \mathbb{Z}$. This is taken to some isomorphism of the set $p^{-1}(x)$. If we choose any identification $\phi \colon p^{-1}(x) \overset{\simeq}{\to} \{1, \cdots, n\}$, then this defines an element $\sigma \in \Sigma(n)$ in the [[symmetric group]]: \begin{displaymath} \itexarray{ x &\mapsto& p^{-1}(x) &\underoverset{\simeq}{\phi}{\longrightarrow}& \{1, \cdots, n\} \\ {}^{\mathllap{1}}\downarrow && {}^{\mathllap{\rho(1)}}\downarrow && \downarrow^{\sigma} \\ x &\mapsto& p^{-1}(x) &\underoverset{\phi}{\simeq}{\longrightarrow}& \{1, \cdots, n\} } \,. \end{displaymath} Now if \begin{displaymath} f \;\colon\; E_1 \overset{\simeq}{\longrightarrow} E_2 \end{displaymath} is an isomorphism of covering spaces, then by the [[fundamental theorem of covering spaces]] this corresponds bijectively to a homomorphism of representations \begin{displaymath} Fib(f) \;\colon\; Fib_{E_1} \overset{\simeq}{\longrightarrow} Fib_{E_2} \end{displaymath} which in turn is by definition a homotopy (natural isomorphism) between the monodromy functors $Fib_{E_i} \;\colon\; B \mathbb{Z} \to Core(Set)$. The combination of the naturality square of this natural isomorphism with the above identification yields the following diagram \begin{displaymath} \itexarray{ \{1,\cdots, n\} &\overset{\phi_1^{-1}}{\longrightarrow}& p_1^{-1}(x) &\overset{f\vert_{\{x\}}}{\longrightarrow}& p_2^{-1}(x) &\overset{\phi_2}{\longrightarrow}& \{1, \cdots, n\} \\ {}^{\mathllap{\sigma_1}} \downarrow && {}^{\mathllap{ Fib_{E_1}(1) }}\downarrow && \downarrow^{\mathrlap{ Fib_{E_2}(1) }} && \downarrow^{\mathrlap{ \sigma_2 }} \\ \{1,\cdots, n\} &\underset{\phi_1^{-1}}{\longrightarrow}& p_1^{-1}(x) &\underset{f\vert_{\{x\}}}{\longrightarrow}& p_2^{-1}(x) &\underset{\phi_2}{\longrightarrow}& \{1, \cdots, n\} } \,. \end{displaymath} The commutativity of the total rectangle says that the permutations $\sigma_1$ and $\sigma_2$ are related by conjugation with the element $\phi_2 \circ f\vert_{\{x\}}\circ \phi_1^{-1}$. \end{example} \begin{example} \label{}\hypertarget{}{} \textbf{(three-sheeted covers of the circle)} Consider the three-sheeted [[covering spaces]] of the [[circle]]. By example \ref{CoveringOfCircleAndConjugacyClassesOfSymmetricGroup} these are, up to isomorphism, given by the [[conjugacy classes]] of the elements of the [[symmetric group]] $\Sigma(3)$ on three elements. These in turn are labeled by the [[cycle]] structure of the elements (\href{symmetric+group#ConjugacycClassesOfSymmetricGroupCorrespondToCycleSet}{this prop.}). For the symmetric group on three elements there are three such classes \begin{displaymath} \itexarray{ (1\; 2\; 3) \\ (1 \; 2) (3) \\ (1) (2) (3) } \end{displaymath} The corresponding covering spaces of the circle are shown in the graphics. \begin{quote}% graphics grabbed from \href{homotopy+equivalence#Hatcher}{Hatcher} \end{quote} \end{example} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{in_topological_homotopy_theory}{}\subsubsection*{{In topological homotopy theory}}\label{in_topological_homotopy_theory} Lecture notes on the classical discussion include \begin{itemize}% \item [[Friedhelm Waldhausen]], p. 63-77 of \emph{Topologie} (\href{https://www.math.uni-bielefeld.de/~fw/ein.pdf}{pdf}) \item [[Jesper Møller]], theorem 3.1 in \emph{The fundamental group and covering spaces} (2011) (\href{http://www.math.ku.dk/~moller/f03/algtop/notes/covering.pdf}{pdf}) \end{itemize} \hypertarget{in_homotopy_type_theory_2}{}\subsubsection*{{In homotopy type theory}}\label{in_homotopy_type_theory_2} The proof in [[homotopy type theory]] is discussed in \begin{itemize}% \item [[Daniel Licata]], [[Michael Shulman]], \emph{Calculating the Fundamental Group of the Circle in Homotopy Type Theory}, (\href{https://arxiv.org/abs/1301.3443}{arXiv:1301.3443}) \item [[UF-IAS-2012|Univalent Foundations Project]], section 8.1 of \emph{[[Homotopy Type Theory -- Univalent Foundations of Mathematics]]} \end{itemize} the HoTT-[[Coq]]-code is at \begin{itemize}% \item [[Mike Shulman]], \emph{\href{https://github.com/HoTT/HoTT/blob/master/Coq/HIT/Pi1S1.v}{P1S1.v}} \end{itemize} \end{document}