\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{fundamental groupoid of a cubical set and the cubical nerve of a groupoid} [[!redirects fundamental groupoid of a cubical set]] [[!redirects cubical nerve of a groupoid]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{introduction}{Introduction}\dotfill \pageref*{introduction} \linebreak \noindent\hyperlink{preliminaries}{Preliminaries}\dotfill \pageref*{preliminaries} \linebreak \noindent\hyperlink{fundamental_groupoid_for_2truncated_cubical_sets}{Fundamental groupoid for 2-truncated cubical sets}\dotfill \pageref*{fundamental_groupoid_for_2truncated_cubical_sets} \linebreak \noindent\hyperlink{2truncated_nerve_functor}{2-truncated nerve functor}\dotfill \pageref*{2truncated_nerve_functor} \linebreak \noindent\hyperlink{adjunction_between_the_fundamental_groupoid_functor_for_2truncated_cubical_sets_and_the_2truncated_cubical_nerve_functor}{Adjunction between the fundamental groupoid functor for 2-truncated cubical sets and the 2-truncated cubical nerve functor}\dotfill \pageref*{adjunction_between_the_fundamental_groupoid_functor_for_2truncated_cubical_sets_and_the_2truncated_cubical_nerve_functor} \linebreak \noindent\hyperlink{fundamental_groupoid_functor}{Fundamental groupoid functor}\dotfill \pageref*{fundamental_groupoid_functor} \linebreak \noindent\hyperlink{nerve_functor}{Nerve functor}\dotfill \pageref*{nerve_functor} \linebreak \noindent\hyperlink{adjunction_between_the_fundamental_groupoid_functor_and_the_nerve_functor}{Adjunction between the fundamental groupoid functor and the nerve functor}\dotfill \pageref*{adjunction_between_the_fundamental_groupoid_functor_and_the_nerve_functor} \linebreak \hypertarget{introduction}{}\subsection*{{Introduction}}\label{introduction} We construct an adjunction between the category of [[groupoid | groupoids]] and the category of [[cubical set | cubical sets]], the left adjoint of which is the \emph{fundamental groupoid} of a cubical set, and the right adjoint of which is the (cubical) \emph{nerve} of a groupoid. \hypertarget{preliminaries}{}\subsection*{{Preliminaries}}\label{preliminaries} \begin{defn} \label{}\hypertarget{}{} We denote the category of [[groupoid | groupoids]] by $\mathsf{Grpd}$. \end{defn} \begin{defn} \label{}\hypertarget{}{} We make use throughout of the notation of [[category of cubes]], [[cubical set]], and [[cubical truncation, skeleton, and co-skeleton]]. \end{defn} \hypertarget{fundamental_groupoid_for_2truncated_cubical_sets}{}\subsection*{{Fundamental groupoid for 2-truncated cubical sets}}\label{fundamental_groupoid_for_2truncated_cubical_sets} \begin{defn} \label{NotationFundamentalGroupoid}\hypertarget{NotationFundamentalGroupoid}{} We denote by $\Pi^{\leq 2}_{1} : \mathsf{Set}^{\square_{\leq 2}^{op}} \rightarrow \mathsf{Grpd}$ the functor defined as follows. 1) To a 2-truncated cubical set $X$, we associate the groupoid $\Pi^{\leq 2}_{1}(X)$ defined as follows. a) The objects of $\Pi^{\leq 2}_{1}(X)$ are the 0-cubes of $X$. b) The arrows of $\Pi^{\leq 2}_{1}(X)$ are zig-zags of 1-cubes of $X$ up to the notion of equivalence defined below, where by a zig-zag of 1-cubes of $X$ we mean, for some integer $n \geq 0$, a set of 1-cubes of $X$ whose faces match up as follows. \begin{displaymath} \itexarray{ x_{0} & \overset{f_{1}}{\rightarrow} & x_{1} \overset{g_{1}}{\leftarrow} & x_{2} & \cdots & x_{2n-2} & \overset{f_{n}}{\rightarrow} & x_{2n-1} \overset{g_{n}}{\leftarrow} & x_{2n} } \end{displaymath} We identify a pair of zig-zags if one can be obtained from the other by a sequence of the following manipulations. i) We may remove or add a pair of arrows (anywhere in the zig-zag) of the form \begin{displaymath} \itexarray{ x_{0} & \overset{f}{\rightarrow} & x_{1} & \overset{f}{\leftarrow} & x_{0} } \end{displaymath} or of the following form. \begin{displaymath} \itexarray{ x_{0} & \overset{f}{\leftarrow} & x_{1} & \overset{f}{\rightarrow} & x_{0} } \end{displaymath} ii) We may replace an entire zig-zag \begin{displaymath} \itexarray{ x_{0} & \overset{f_{1}}{\rightarrow} & x_{1} \overset{g_{1}}{\leftarrow} & x_{2} & \cdots & x_{2n-2} & \overset{f_{n}}{\rightarrow} & x_{2n-1} \overset{g_{n}}{\leftarrow} & x_{2n} } \end{displaymath} with a zig-zag \begin{displaymath} \itexarray{ x'_{0} & \overset{f'_{1}}{\rightarrow} & x'_{1} \overset{g'_{1}}{\leftarrow} & x'_{2} & \cdots & x'_{2n-2} & \overset{f'_{n}}{\rightarrow} & x'_{2n-1} \overset{g'_{n}}{\leftarrow} & x'_{2n} } \end{displaymath} if there is, for every $1 \leq i \leq n$, a 2-cube of $X$ whose horizontal 1-cubes are as follows \begin{displaymath} \itexarray{ x_{2i-2} & \overset{f_{i}}{\to} & x'_{2i-1} \\ \downarrow & & \downarrow \\ x'_{2i-2} & \underset{f'_{i}}{\to} & x'_{2i-1} } \end{displaymath} and there is, for every $1 \leq i \leq n$, a 2-cube of $X$ whose horizontal 1-cubes are as follows. \begin{displaymath} \itexarray{ x_{2i-1} & \overset{g_{i}}{\leftarrow} & x'_{2i} \\ \downarrow & & \downarrow \\ x'_{2i-1} & \underset{g'_{i}}{\leftarrow} & x'_{2i} } \end{displaymath} c) The source of a zig-zag as at the beginning of b) is $x_{0}$, and the target is $x_{2n}$. d) Composition of arrows is given by concatenation of zig-zags (it is immediately verified that this is well-defined with respect to the equivalence relation of b)). e) The identity arrow on an object $x$ of $\Pi^{\leq 2}_{1}(X)$ is the zig-zag with $n = 0$ consisting simply of $x$. f) The inverse of an arrow \begin{displaymath} \itexarray{ x_{0} & \overset{f_{1}}{\rightarrow} & x_{1} \overset{g_{1}}{\leftarrow} & x_{2} & \cdots & x_{2n-2} & \overset{f_{n}}{\rightarrow} & x_{2n-1} \overset{g_{n}}{\leftarrow} & x_{2n} } \end{displaymath} of $\Pi_{1}(X)$ is the following arrow (it is immediately verified that this is well-defined with respect to the equivalence relation of b)). \begin{displaymath} \itexarray{ x_{2n} & \overset{g_{n}}{\rightarrow} & x_{2n-1} \overset{f_{n}}{\leftarrow} & x_{2n-2} & \cdots & x_{2} & \overset{g_{1}}{\rightarrow} & x_{1} \overset{f_{1}}{\leftarrow} & x_{0} } \end{displaymath} 2) To a morphism of 2-truncated cubical sets $F : X \rightarrow Y$, we associate the functor $\Pi^{\leq 2}_{1}(F) : \Pi^{\leq 2}_{1}(X) \rightarrow \Pi^{\leq 2}_{1}(Y)$ defined as follows. a) On objects, $\Pi^{\leq 2}_{1}(F)$ is the same as $F$. b) To a zig-zag as follows \begin{displaymath} \itexarray{ x_{0} & \overset{f_{1}}{\rightarrow} & x_{1} \overset{g_{1}}{\leftarrow} & x_{2} & \cdots & x_{2n-2} & \overset{f_{n}}{\rightarrow} & x_{2n-1} \overset{g_{n}}{\leftarrow} & x_{2n} } \end{displaymath} we associate the following zig-zag. \begin{displaymath} \itexarray{ F(x_{0}) & \overset{F(f_{1})}{\rightarrow} & F(x_{1}) \overset{F(g_{1})}{\leftarrow} & F(x_{2}) & \cdots & F(x_{2n-2}) & \overset{F(f_{n})}{\rightarrow} & F(x_{2n-1}) \overset{F(g_{n})}{\leftarrow} & F(x_{2n}) } \end{displaymath} It is immediately verified that this is well-defined with respect to the equivalence relation of 1) b). \end{defn} \begin{defn} \label{}\hypertarget{}{} We refer to $\Pi^{\leq 2}_{1} : \mathsf{Set}^{\square_{\leq 2}^{op}} \rightarrow \mathsf{Grpd}$ as the \emph{fundamental groupoid} functor for 2-truncated cubical sets. \end{defn} \hypertarget{2truncated_nerve_functor}{}\subsection*{{2-truncated nerve functor}}\label{2truncated_nerve_functor} \begin{defn} \label{}\hypertarget{}{} We denote by $N^{\leq 2} : \mathsf{Grpd} \rightarrow \mathsf{Set}^{\square_{\leq 2}^{op}}$ the functor defined as follows. 1) To a groupoid $\mathcal{A}$, we associate the 2-truncated cubical set $N^{\leq 2}(\mathcal{A})$ defined as follows. a) The 0-cubes of $N^{\leq 2}(\mathcal{A})$ are the objects of $\mathcal{A}$. b) The 1-cubes $f : a_{0} \rightarrow a_{1}$ of $N^{\leq 2}(\mathcal{A})$ are the arrows $f$ of $\mathcal{A}$ with source $a_{0}$ and target $a_{1}$. c) The 2-cubes \begin{displaymath} \itexarray{ a_{0} & \overset{f_{0}}{\to} & a_{1} \\ f_{2} \downarrow & \sigma & \downarrow f_{1} \\ a_{2} & \underset{f_{3}}{\to} & a_{3} } \end{displaymath} of $N^{\leq 2}(\mathcal{A})$ are the commutative squares $\sigma$ of $\mathcal{A}$ whose boundary looks the same as this. d) The degenerate 1-cubes of $N^{\leq 2}(\mathcal{A})$ are the identity arrows of $\mathcal{A}$. e) The degenerate 2-cubes of $N^{\leq 2}(\mathcal{A})$ are the commutative squares of $\Pi^{\leq 2}_{1}(\mathcal{A})$ which look as follows \begin{displaymath} \itexarray{ x_{0} & \overset{f}{\to} & x_{1} \\ id \downarrow & \sigma & \downarrow id \\ x_{0} & \underset{f}{\to} & x_{1} } \end{displaymath} or as follows. \begin{displaymath} \itexarray{ x_{0} & \overset{id}{\to} & x_{0} \\ f \downarrow & \sigma & \downarrow f \\ x_{1} & \underset{id}{\to} & x_{1} } \end{displaymath} 2) To a functor $F : \mathcal{A} \rightarrow \mathcal{B}$, we associate the morphism of 2-truncated cubical sets $N^{\leq 2}(F) : N^{\leq 2}(\mathcal{A}) \rightarrow N^{\leq 2}(\mathcal{B})$ defined as follows. a) On 0-cubes, $N^{\leq 2}(\mathcal{A})$ is the same as $F$. b) On 1-cubes, $N^{\leq 2}(F)$ is the same as $F$. c) On 2-cubes, $N^{\leq 2}(F)$ sends a commutative square \begin{displaymath} \itexarray{ a_{0} & \overset{f_{0}}{\to} & a_{1} \\ f_{2} \downarrow & \sigma & \downarrow f_{1} \\ a_{2} & \underset{f_{3}}{\to} & a_{3} } \end{displaymath} of $\mathcal{A}$ to the commutative square \begin{displaymath} \itexarray{ F(a_{0}) & \overset{F(f_{0})}{\to} & F(a_{1}) \\ F(f_{2}) \downarrow & F(\sigma) & \downarrow F(f_{1}) \\ F(a_{2}) & \underset{F(f_{3})}{\to} & F(a_{3}) } \end{displaymath} of $\mathcal{A}$. \end{defn} \begin{defn} \label{}\hypertarget{}{} We refer to $N^{\leq 2} : \mathsf{Grpd} \rightarrow \mathsf{Set}^{\square_{\leq 2}^{op}}$ as the 2-truncated \emph{nerve} functor. \end{defn} \hypertarget{adjunction_between_the_fundamental_groupoid_functor_for_2truncated_cubical_sets_and_the_2truncated_cubical_nerve_functor}{}\subsection*{{Adjunction between the fundamental groupoid functor for 2-truncated cubical sets and the 2-truncated cubical nerve functor}}\label{adjunction_between_the_fundamental_groupoid_functor_for_2truncated_cubical_sets_and_the_2truncated_cubical_nerve_functor} \begin{defn} \label{}\hypertarget{}{} We denote by $\epsilon : \Pi^{\leq 2}_{1} \circ N^{\leq 2} \rightarrow id$ the natural transformation which to a groupoid $\mathcal{A}$ associates the functor $\epsilon(\mathcal{A}) : \Pi^{\leq 2}_{1} \circ N^{\leq 2}(\mathcal{A}) \rightarrow \mathcal{A}$ defined as follows. 1) On objects it is the identity. 2) To an arrow of $\Pi^{\leq 2}_{1} \circ N^{\leq 2}(\mathcal{A})$, given by a zig-zag of arrows \begin{displaymath} \itexarray{ a_{0} & \overset{f_{1}}{\rightarrow} & a_{1} \overset{g_{1}}{\leftarrow} & a_{2} & \cdots & a_{2n-2} & \overset{f_{n}}{\rightarrow} & a_{2n-1} \overset{g_{n}}{\leftarrow} & a_{2n} } \end{displaymath} of $\mathcal{A}$, we associate the arrow of $\mathcal{A}$ given by the composition in $\mathcal{A}$ of the arrows \begin{displaymath} \itexarray{ a_{0} & \overset{f_{1}}{\rightarrow} & a_{1} \overset{g_{1}^{-1}}{\rightarrow} & a_{2} & \cdots & a_{2n-2} & \overset{f_{n}}{\rightarrow} & a_{2n-1} \overset{g_{n}^{-1}}{\rightarrow} & a_{2n} } \end{displaymath} of $\mathcal{A}$. It is straightforward to check that this is well-defined with respect to the equivalence relation of 1 b) of Notation \ref{NotationFundamentalGroupoid}, and that we indeed have a functor. \end{defn} \begin{defn} \label{}\hypertarget{}{} We denote by $\eta : id \rightarrow N^{\leq 2} \circ \Pi^{\leq 2}_{1}$ the natural transformation which to a 2-truncated cubical set $X$ associates the morphism of 2-truncated cubical sets $\eta(X) : X \rightarrow N^{\leq 2} \circ \Pi^{\leq 2}_{1}(X)$ defined as follows. 1) On objects it is the identity. 2) To a 1-cube $f : x_{0} \rightarrow x_{1}$ of $X$ we associate the following zig-zag of 1-cubes of $X$, where the right arrow is the degeneracy on $x_{1}$. \begin{displaymath} \itexarray{ x_{0} & \overset{f}{\rightarrow} & x_{1} \overset{id}{\leftarrow} & x_{1} } \end{displaymath} 3) To a 2-cube \begin{displaymath} \itexarray{ x_{0} & \overset{f_{0}}{\to} & x_{1} \\ f_{2} \downarrow & \sigma & \downarrow f_{1} \\ x_{2} & \underset{f_{3}}{\to} & x_{3} } \end{displaymath} of $X$ we associate the commutative square in $\Pi^{\leq 2}_{1}(X)$ given as follows. \begin{displaymath} \itexarray{ x_{0} & \overset{f_{0}}{\to} & x_{1} & \overset{id}{\leftarrow} & x_{1} \\ f_{2} \downarrow & & & & \downarrow f_{1} \\ x_{2} & & & & x_{3} \\ id \downarrow & & & & \downarrow id \\ x_{2} & \underset{f_{3}}{\to} & x_{2} & \underset{id}{\leftarrow} & x_{3} \\ } \end{displaymath} The following diagram of commutative squares in $\Pi^{\leq 2}_{1}(X)$ illustrates that the above square does indeed commute in $\Pi^{\leq 2}_{1}(X)$. \begin{displaymath} \itexarray{ x_{0} & \overset{f_{0}}{\rightarrow} & x_{1} & \overset{id}{\leftarrow} & x_{1} & \overset{f_{1}}{\rightarrow} & x_{2} & \overset{id}{\leftarrow} & x_{2} \\ id \downarrow & & \downarrow A & & \downarrow A & & \downarrow id & & \downarrow id \\ x_{0} & \underset{f_{2}}{\rightarrow} & x_{2} & \underset{id}{\leftarrow} & x_{2} & \underset{f_{3}}{\rightarrow} & x_{3} & \underset{id}{\leftarrow} & x_{3} } \end{displaymath} Here A is $f_{2} \circ f_{0}^{-1}$. That the square \begin{displaymath} \itexarray{ x_{1} & \overset{f_{1}}{\to} & x_{3} \\ A \downarrow & & \downarrow id \\ x_{2} & \underset{f_{3}}{\to} & x_{3} } \end{displaymath} commutes follows easily from the commutativity of the square arising from the 2-cube $\sigma$ of $X$ above. \end{defn} \begin{defn} \label{PropositionAdjunctionBetweenPi1TwoTruncAndNTwoTrunc}\hypertarget{PropositionAdjunctionBetweenPi1TwoTruncAndNTwoTrunc}{} The natural transformations $\eta$ and $\epsilon$ define an adjunction between $\Pi^{\leq 2}_{1}$ and $N^{\leq 2}$. \end{defn} \begin{proof} Straightforward verification that the triangle identities hold. \end{proof} \hypertarget{fundamental_groupoid_functor}{}\subsection*{{Fundamental groupoid functor}}\label{fundamental_groupoid_functor} \begin{defn} \label{}\hypertarget{}{} Adopting the notation of [[cubical truncation, skeleton, and co-skeleton]], we denote by $\Pi_{1} : \mathsf{Set}^{\square^{op}} \rightarrow \mathsf{Grpd}$ the functor \begin{displaymath} \itexarray{ \mathsf{Set}^{\square^{op}} & \overset{tr_{2}}{\rightarrow} & \mathsf{Set}^{\square_{2}^{op}} & \overset{\Pi_{1}^{\leq 2}}{\rightarrow} & \mathsf{Grpd}. } \end{displaymath} \end{defn} \begin{defn} \label{}\hypertarget{}{} We refer to the functor $\Pi_{1} : \mathsf{Set}^{\square^{op}} \rightarrow \mathsf{Grpd}$ as the \emph{fundamental groupoid} functor. \end{defn} \hypertarget{nerve_functor}{}\subsection*{{Nerve functor}}\label{nerve_functor} \begin{defn} \label{}\hypertarget{}{} Adopting the notation of [[cubical truncation, skeleton, and co-skeleton]], we denote by $N : \mathsf{Grpd} \rightarrow \mathsf{Set}^{\square^{op}}$ the functor \begin{displaymath} \itexarray{ \mathsf{Grpd} & \overset{N^{\leq 2}}{\rightarrow} & \mathsf{Set}^{\square_{\leq 2} ^{op}} & \overset{cosk_{2}}{\rightarrow} & \mathsf{Set}^{\square^{op}}. } \end{displaymath} \end{defn} \begin{defn} \label{}\hypertarget{}{} We refer to the functor $N : \mathsf{Set}^{\square^{op}} \rightarrow \mathsf{Grpd}$ as the \emph{nerve} functor. \end{defn} \hypertarget{adjunction_between_the_fundamental_groupoid_functor_and_the_nerve_functor}{}\subsection*{{Adjunction between the fundamental groupoid functor and the nerve functor}}\label{adjunction_between_the_fundamental_groupoid_functor_and_the_nerve_functor} Since $\Pi^{\leq 2}_{1}$ is left adjoint to $N^{\leq 2}$ by Proposition $\backslash$ref above, and since $tr_{2}$ is left adjoint to $cosk_{2}$, we have that $\Pi_{1}$ is left adjoint to $N$. \end{document}