\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{fundamental product theorem in topological K-theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{statement}{Statement}\dotfill \pageref*{statement} \linebreak \noindent\hyperlink{bott_periodicity}{Bott periodicity}\dotfill \pageref*{bott_periodicity} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For $X$ a [[compact Hausdorff space]] The \emph{fundamental product theorem in topological K-theory} identifies \begin{enumerate}% \item the [[topological K-theory]]-[[commutative ring|ring]] $K(X \times S^2)$ of the [[product topological space]] $X \times S^2$ with the [[2-sphere]] $S^2$; \item the K-theory ring $K(X)$ of the original space $X$ with a generator $H$ for the [[basic line bundle on the 2-sphere]] adjoined: \end{enumerate} \begin{displaymath} K(X) \otimes_{\mathbb{Z}} \mathbb{Z}[H]/(H-1)^2 \overset{\simeq}{\longrightarrow} K(X \times S^2) \,. \end{displaymath} This theorem in particular serves as a substantial step in a [[proof]] of [[Bott periodicity]] for [[topological K-theory]] (cor \ref{BottPeriodicity} below). The usual [[proof]] proceeds by \begin{enumerate}% \item realizing all [[vector bundles]] on $X \times S^2$ via an $X$-parameterized [[clutching construction]]; \item showing that all the clutching functions are [[homotopy|homotopic]] to those that are Laurent polynomials as functions on $S^1$, hence products of a polynomial clutching $p$ functions with a monomial $z^{-n}$ of negative power; \item observing that the bundle corresponding to a clutching function of the form $f z^n$ is equivalent to the bundle corresponding to $f$ and tensored with the $n$th [[tensor product of vector bundles]]-power of the [[basic complex line bundle on the 2-sphere]]; \item showing that some [[direct sum of vector bundles]] of the vector bundle corresponding to a polynomial clutching function with one coming from a trivial clutching function is given by a linear clutching function; \item showing that bundles coming from linear clutching functions are [[direct sums of vector bundles|direct sums]] of one coming from a trivial clutching function with the one coming from the homogeneously linear part; \end{enumerate} Applying these steps to a vector bundle on $X \times S^2$ yields a virtual sum of [[external tensor products of vector bundles]] of bundles on $X$ with powers of the [[basic complex line bundle on the 2-sphere]]. This means that the function in the fundamental product theorem is surjective. By similar means one shows that it is also injective. \hypertarget{statement}{}\subsection*{{Statement}}\label{statement} For $S^2 \subset \mathbb{R}^3$ the [[2-sphere]] with its [[Euclidean space|Euclidean]] [[subspace topology]], write $h$ for the [[basic line bundle on the 2-sphere]]. Its image in the [[topological K-theory]] ring $K(S^2)$ satisfies the relation \begin{displaymath} 2 h = h^2 + 1 \;\;\Leftrightarrow\;\; (h-1)^2 = 0 \end{displaymath} (by \href{basic+complex+line+bundle+on+the+2-sphere#TensorRelationForBasicLineBundleOn2Sphere}{this prop.}). Notice that $h-1$ is the image of $h$ in the [[reduced K-theory]] $\tilde K(X)$ of $S^2$ under the splitting $K(X) \simeq \tilde K(X) \oplus \mathbb{Z}$ (by \href{topological+K-theory#KGrupDirectSummandReducedKGroup}{this prop.}). This element \begin{displaymath} h - 1 \in \tilde K_{\mathbb{C}}(S^2) \end{displaymath} is called the \emph{[[Bott element]]} of complex [[topological K-theory]]. It follows that there is a [[ring homomorphism]] of the form \begin{displaymath} \itexarray{ \mathbb{Z}[h]/\left( (h-1)^2 \right) &\overset{}{\longrightarrow}& K(S^2) \\ h &\overset{\phantom{AAA}}{\mapsto}& h } \end{displaymath} from the [[polynomial ring]] in one abstract generator, [[quotient ring|quotiented]] by this relation, to the [[topological K-theory]] ring. More generally, for $X$ a [[topological space]], then this induces the composite ring homomorphism \begin{displaymath} \itexarray{ \Phi \colon & K(X) \otimes \mathbb{Z}[h]/((h-1)^2) & \longrightarrow & K(X) \otimes K(S^2) & \overset{\boxtimes}{\longrightarrow} & K(X \times S^2) \\ & (E, h) &\overset{\phantom{AAA} }{\mapsto}& (E,H) &\overset{\phantom{AAA}}{\mapsto}& (\pi_{X}^\ast E) \cdot (\pi_{S^2}^\ast H) } \end{displaymath} to the topological K-theory ring of the [[product topological space]] $X \times S^2$, where the second map $\boxtimes$ is the [[external tensor product of vector bundles]]. \begin{prop} \label{FundamentalProductTheorem}\hypertarget{FundamentalProductTheorem}{} \textbf{(fundamental product theorem in topological K-theory)} For $X$ a [[compact Hausdorff space]], then ring homomorphism $\Phi \colon K(X) \otimes \mathbb{Z}[h]/((h-1)^2) \longrightarrow K(X \times S^2)$ is an [[isomorphism]]. \end{prop} (e.g. \hyperlink{Hatcher}{Hatcher, theorem 2.2}) \begin{remark} \label{}\hypertarget{}{} More generally, for $L\to X$ a [[complex line bundle]] with class $l \in K(X)$ and with $P(1 \oplus L)$ denoting its [[projective bundle]] then \begin{displaymath} K(X)[h]/((h-1)(l \cdot h -1)) \simeq K(P(1 \oplus L)) \end{displaymath} \end{remark} (e.g. \hyperlink{Wirthmuller12}{Wirthmuller 12, p. 17}) As a special case this implies the first statement above: For $X = \ast$ the product theorem prop. \ref{FundamentalProductTheorem} says in particular that the first of the two morphisms in the composite is an [[isomorphism]] (example \ref{TopologicalKTheoryRingOfThe2Sphere} below) and hence by the [[two-out-of-three]]-property for [[isomorphisms]] it follows that \begin{cor} \label{ExternalProductTheorem}\hypertarget{ExternalProductTheorem}{} \textbf{(external product theorem)} For $X$ a [[compact Hausdorff space]] we have that the [[external tensor product of vector bundles]] with vector bundles on the [[2-sphere]] \begin{displaymath} \boxtimes \;\colon\; K(X) \otimes K(S^2) \overset{\simeq}{\longrightarrow} K(X \times S^2) \end{displaymath} is an [[isomorphism]] in [[topological K-theory]]. \end{cor} \hypertarget{bott_periodicity}{}\subsection*{{Bott periodicity}}\label{bott_periodicity} When restricted to [[reduced K-theory]] then the external product theorem (cor. \ref{ExternalProductTheorem}) yields the statement of [[Bott periodicity]] of topological K-theory: \begin{cor} \label{BottPeriodicity}\hypertarget{BottPeriodicity}{} \textbf{([[Bott periodicity]])} Let $X$ be a [[pointed topological space|pointed]] [[compact Hausdorff space]]. Then there is an [[isomorphism]] of [[reduced K-theory]] \begin{displaymath} (h-1) \widetilde \boxtimes (-) \;\colon\; \tilde K(X) \overset{\simeq}{\longrightarrow} \tilde K(\Sigma^2 X) \end{displaymath} from that of $X$ to that of its double [[suspension]] $\Sigma^2 X$. \end{cor} \begin{proof} By \href{topologica+K-theory#ReducedKTheoryOfProductSpace}{this example} there is for any two pointed compact Hausdorff spaces $X$ and $Y$ an [[isomorphism]] \begin{displaymath} \tilde K(Y \times X) \simeq \tilde K(Y \wedge X) \oplus \tilde K(Y) \oplus \tilde K(X) \end{displaymath} relating the reduced K-theory of the [[product topological space]] with that of the [[smash product]]. Using this and the fact that for any pointed compact Hausdorff space $Z$ we have $K(Z) \simeq \tilde K(Z) \oplus \mathbb{Z}$ (\href{topological+K-theory#KGrupDirectSummandReducedKGroup}{this prop.}) the isomorphism of the external product theorem (cor. \ref{ExternalProductTheorem}) \begin{displaymath} K(S^2) \otimes K(X) \underoverset{\simeq}{\boxtimes}{\longrightarrow} K(S^2 \times X) \end{displaymath} becomes \begin{displaymath} \left( \tilde K(S^2) \oplus \mathbb{Z} \right) \otimes \left( \tilde K(X) \oplus \mathbb{Z} \right) \;\simeq\; \left( \tilde K(S^2 \times X) \oplus \mathbb{Z} \right) \simeq \left( \tilde K(S^2 \wedge X) \oplus \tilde K(S^2) \oplus \tilde K(X) \oplus \mathbb{Z} \right) \,. \end{displaymath} Multiplying out and chasing through the constructions to see that this reduces to an isomorphism on the common summand $\tilde K(S^2) \oplus \tilde K(X) \oplus \mathbb{Z}$, this yields an isomorphism of the form \begin{displaymath} \tilde K(S^2) \otimes \tilde K(X) \underoverset{\simeq}{\widetilde \boxtimes}{\longrightarrow} \tilde K(S^2 \wedge X) = \tilde K(\Sigma^2 X) \,, \end{displaymath} where on the right we used that [[smash product]] with the 2-sphere is the same as double [[suspension]]. Finally there is an [[isomorphism]] \begin{displaymath} \itexarray{ \mathbb{Z} &\underoverset{\simeq}{ \beta }{\longrightarrow}& \tilde K_{\mathbb{C}}(S^2) \\ 1 &\overset{\phantom{AAA}}{\mapsto}& (h-1) } \end{displaymath} (example \ref{TopologicalKTheoryRingOfThe2Sphere}). The composite \begin{displaymath} \itexarray{ \tilde K_{\mathbb{C}}(X) & \simeq \mathbb{Z} \otimes \tilde K_{\mathbb{C}}(X) \overset{ \beta \otimes id }{\longrightarrow} \tilde K_{\mathbb{C}}(S^2) \otimes \tilde K_{\mathbb{C}}(X) \underoverset{\simeq}{\widetilde \boxtimes}{\longrightarrow} & \tilde K_{\mathbb{C}}(S^2 \wedge X) = \tilde K_{\mathbb{C}}(\Sigma^2 X) \\ E - rk_x(E) &\overset{\phantom{AAAA}}{\mapsto}& (h-1) \widetilde \boxtimes (E - rk_x(E)) } \end{displaymath} is the isomorphism to be established. \end{proof} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{example} \label{TopologicalKTheoryRingOfThe2Sphere}\hypertarget{TopologicalKTheoryRingOfThe2Sphere}{} \textbf{([[topological K-theory]] ring of the [[2-sphere]])} For $X = \ast$ the [[point space]], the fundamental product theorem \ref{FundamentalProductTheorem} states that the homomorphism \begin{displaymath} \itexarray{ \mathbb{Z}[h]/((h-1)^2) &\longrightarrow& K(S^2) \\ h &\mapsto& h } \end{displaymath} is an [[isomorphism]]. This means that the relation $(h-1)^2 = 0$ satisfied by the [[basic line bundle on the 2-sphere]] (\href{basic+complex+line+bundle+on+the+2-sphere#TensorRelationForBasicLineBundleOn2Sphere}{this prop.}) is the \emph{only} relation is satisfies in topological K-theory. Notice that the underlying [[abelian group]] of $\mathbb{Z}[h]/((h-1)^2)$ is two [[direct sum]] copies of the [[integers]], \begin{displaymath} K(S^2) \simeq \mathbb{Z} \oplus \mathbb{Z} = \langle 1, h\rangle \end{displaymath} one copy spanned by the [[trivial vector bundle|trivial]] [[complex line bundle]] on the 2-sphere, the other spanned by the [[basic complex line bundle on the 2-sphere]]. (In contrast, the underlying abelian group of the [[polynomial ring]] $\mathbb{R}[h]$ has infinitely many copies of $\mathbb{Z}$, one for each $h^n$, for $n \in \mathbb{N}$). It follows (by \href{topological+K-theory#KGrupDirectSummandReducedKGroup}{this prop.}) that the [[reduced K-theory]] group of the 2-sphere is \begin{displaymath} \tilde K(S^2) \simeq \mathbb{Z} \,. \end{displaymath} \end{example} \hypertarget{references}{}\subsection*{{References}}\label{references} Expositions include: \begin{itemize}% \item [[Klaus Wirthmüller]], section 6 (from p. 19 on) in \emph{Vector bundles and K-theory}, 2012 (\href{ftp://www.mathematik.uni-kl.de/pub/scripts/wirthm/Top/vbkt_skript.pdf}{pdf}) \item [[Allen Hatcher]], section 2.1 (from p. 45 on) in \emph{Vector bundles and K-theory} (\href{https://www.math.cornell.edu/~hatcher/VBKT/VBpage.html}{web}) \end{itemize} [[!redirects external product theorem]] [[!redirects external product theorem in topological K-theory]] [[!redirects fundamental product theorem in K-theory]] \end{document}