\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{fundamental theorem of covering spaces} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{bundles}{}\paragraph*{{Bundles}}\label{bundles} [[!include bundles - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{statement}{Statement}\dotfill \pageref*{statement} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[topological homotopy theory]], the \emph{fundamental theorem of covering spaces} says that for a sufficiently well-behaved [[topological space]] $X$, then the [[functor]] which sends a [[covering space]] of $X$ to the [[Set]]-[[action]] ([[permutation representation]]) of the [[fundamental groupoid]] of $X$ on the [[fibers]] of $E$ is an [[equivalence of categories]]. This is a basic instance of the general principle of [[Galois theory]]. It follows in particular that for [[connected topological space|connected]] $X$ then the [[automorphism group]] of the [[universal covering space]] of $X$ coincides with the [[fundamental group]] $\pi_1(X,x)$ itself (for any basepoint $x$). This often yields a convenient means to determine the [[fundamental group]] of $X$ in the first place. \hypertarget{statement}{}\subsection*{{Statement}}\label{statement} \begin{theorem} \label{FundamentalTheoremOfCoveringSpaces}\hypertarget{FundamentalTheoremOfCoveringSpaces}{} \textbf{(fundamental theorem of covering spaces)} Let $X$ be a [[locally path-connected topological space|locally path-connected]] and [[semi-locally simply-connected topological space]]. Then the operations on \begin{enumerate}% \item extracting the [[monodromy]] $Fib_{E}$ of a [[covering space]] $E$ over $X$ \item [[reconstructing a covering space from monodromy]] $Rec(\rho)$ \end{enumerate} constitute an [[equivalence of categories]] \begin{displaymath} Cov(X) \underoverset {\underset{Fib}{\longrightarrow}} {\overset{Rec}{\longleftarrow}} {\simeq} Set^{\Pi_1(X)} \end{displaymath} between the [[category of covering spaces]], and the category of [[permutation representation|permutation]] [[groupoid representations]] of the [[fundamental groupoid]] of $X$. \end{theorem} \begin{proof} With the standard definitions of the two functors, both are in fact inverse [[isomorphisms]] of categories instead of just [[equivalences of categories]] (meaning that the required [[natural isomorphisms]] from the composites of the two functors to the [[identity functor]] are componentwise [[equalities]]), which establishes the claim right away. For definiteness, we make this explicit: Given $\rho \in Set^{\Pi_1(X)}$ a [[permutation representation]], we need to exhibit a [[natural isomorphism]] of permutation representations. \begin{displaymath} \eta_{\rho} \;\colon\; \rho \longrightarrow Fib(Rec(\rho)) \end{displaymath} First consider what the right hand side is like: By \href{reconstruction+of+covering+spaces+from+monodromy#ElementaryReconstructionCoveringSpace}{this def.} of $Rec$ and \href{monodromy#CoveringSpaceMonodromy}{this def.} of $Fib$ we have for every $x \in X$ an actual equality \begin{displaymath} Fib(Rec(\rho))(x) = \rho(x) \,. \end{displaymath} To similarly understand the value of $Fib(Rec(\rho))$ on morphisms $[\gamma] \in \Pi_1(X)$, let $\gamma \colon [0,1] \to X$ be a representing [[path]] in $X$. As in the proof of the path lifting lemma for covering spaces (\href{covering+space#CoveringSpacePathLifting}{this lemma}) we find a [[finite number]] of paths $\{\gamma_i\}_{i \in \{1,n\}}$ such that \begin{enumerate}% \item regarded as morphisms $[\gamma_i]$ in $\Pi_1(X)$ they [[composition|compose]] to $[\gamma]$: \begin{displaymath} [\gamma] = [\gamma_n] \circ \cdots \circ [\gamma_2] \circ [\gamma_1] \end{displaymath} \item each $\gamma_i$ factors through an open subset $U_i \subset X$ over which $Rec(\rho)$ trivializes. \end{enumerate} Hence by [[functor|functoriality]] of $Fib(Rec(\rho))$ it is sufficient to understand its value on these paths $\gamma_i$. But on these we have again by direct unwinding of the definitions that \begin{displaymath} Fib(Rec(\rho))([\gamma_i]) = \rho([\gamma_i]) \,. \end{displaymath} This means that if we take \begin{displaymath} \eta_\rho(x) \colon \rho(x) \overset{=}{\longrightarrow} Fib(Rec(\rho)) \end{displaymath} to be the above identification, then this is a [[natural transformation]] and hence in a particular a natural isomorphism, as required. It remains to see that these morphisms $\eta_\rho$ are themselves natural in $\rho$, hence that for each morphism $\phi \colon \rho \to \rho'$ the diagram \begin{displaymath} \itexarray{ \rho &\overset{\phi}{\longrightarrow}& \rho' \\ {}^{\mathllap{eta_\rho}}\downarrow && \downarrow^{\mathrlap{\eta_{\rho'}}} \\ Fib(Rec(\rho)) &\underset{Fib(Rec(\phi))}{\longrightarrow}& Fib(Rec(\rho')) } \end{displaymath} commutes as a diagram in $Rep(\Pi_1(X), Set)$. Since these morphisms are themselves groupoid homotopies (natural isomorphisms) this is the case precisely if for all $x \in X$ the corresponding component diagram commutes. But by the above this is \begin{displaymath} \itexarray{ \rho(x) &\overset{\phi(x)}{\longrightarrow}& \rho'(x) \\ {}^{\mathllap{=}}\downarrow && \downarrow^{\mathrlap{=}} \\ Fib(Rec(\rho))(x) &\underset{Fib(Rec(\phi))(x) }{\longrightarrow}& Fib(Rec(\rho'))(x) } \end{displaymath} and hence this means that the top and bottom horizontal morphism are in fact equal. Direct unwinding of the definitions shows that this is indeed the case. Conversely, given $E \in Cov(X)$ a covering space, we need to exhibit a natural isomorphism of covering spaces of the form \begin{displaymath} \epsilon_E \;\colon\; Rec(Fib(E)) \longrightarrow E \,. \end{displaymath} Again by \href{reconstruction+of+covering+spaces+from+monodromy#ElementaryReconstructionCoveringSpace}{this def.} of $Rec$ and \href{monodromy#CoveringSpaceMonodromy}{this def.} of $Fib$ the underlying set of $Rec(Fib(E))$ is actually equal to that of $E$, hence it is sufficient to check that this [[identity function]] on underlying sets is a [[homeomorphism]] of [[topological spaces]]. By the assumption that $X$ is [[locally path-connected topological space|locally path-connected]] and [[semi-locally simply connected topological space|semi-locally simply connected]], it is sufficient to check for $U\subset X$ an open path-connected subset and $x \in X$ a point with the property that $\pi_1(U,x) \to \pi_1(X,x)$ lands is constant on the trivial element, that the open subsets of $E$ of the form $U \times \{\hat x\} \subset p^{-1}(U)$ form a basis for the topology of $Rec(Fib(E))$. But this is the case by definition of $Rec$. It remains to see that $\epsilon_E$ is itself natural in $E$. But as for the converse direction, since the components of $\epsilon_E$ are in fact equalities, this follows by direct unwinding of the definitions. This establishes an equivalence as required. In fact this is an [[adjoint equivalence]]. \end{proof} \hypertarget{applications}{}\subsection*{{Applications}}\label{applications} \begin{itemize}% \item [[fundamental group of the circle is the integers]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Lecture notes include \begin{itemize}% \item [[Friedhelm Waldhausen]], around p. 122 of \emph{Topologie} (\href{https://www.math.uni-bielefeld.de/~fw/ein.pdf}{pdf}) \item [[Jesper Møller]], \emph{The fundamental group and covering spaces} (2011) (\href{http://www.math.ku.dk/~moller/f03/algtop/notes/covering.pdf}{pdf}) \end{itemize} \end{document}