\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{fusion category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{monoidal_categories}{}\paragraph*{{Monoidal categories}}\label{monoidal_categories} [[!include monoidal categories - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{relation_to_weak_hopf_algebras}{Relation to weak Hopf algebras}\dotfill \pageref*{relation_to_weak_hopf_algebras} \linebreak \noindent\hyperlink{relation_to_pivotal_and_spherical_categories}{Relation to pivotal and spherical categories}\dotfill \pageref*{relation_to_pivotal_and_spherical_categories} \linebreak \noindent\hyperlink{RelationtoTQFT}{Relation to extended 3d TQFT}\dotfill \pageref*{RelationtoTQFT} \linebreak \noindent\hyperlink{suggestions}{Suggestions}\dotfill \pageref*{suggestions} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} A \textbf{fusion category} is a [[rigid monoidal category|rigid]] [[semisimple category|semisimple]] [[linear category|linear]] ([[Vect]]-[[enriched category|enriched]]) [[monoidal category]] (``[[tensor category]]''), with only [[finite number|finitely]] many [[decategorification|isomorphism classes]] of [[simple objects]], such that the [[endomorphism]]s of the unit object form just the [[ground field]] $k$. \end{defn} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} The name ``fusion category'' comes from the central examples of structures whose canonical [[tensor product]] is called a ``fusion product'', notably [[representation]]s of [[loop group]]s and of [[Hopf algebra]]s and of [[vertex operator algebra]]s. Some of the easiest examples are: \begin{itemize}% \item Representations of a finite group or (\href{https://ncatlab.org/nlab/show/supergroup#finite_supergroups}{finite super-group}) \item For a given finite group $G$ and a 3-cocycle on $G$ with values in (the multiplicative group of units of) a field $k$ (an element of $H^3(G,k^\times)$), take $G$-graded vector spaces with the cocycle as associator. \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{relation_to_weak_hopf_algebras}{}\subsubsection*{{Relation to weak Hopf algebras}}\label{relation_to_weak_hopf_algebras} Under [[Tannaka duality]], every fusion category $C$ arises as the [[representation category]] of a [[weak Hopf algebra]]. (\hyperlink{Ostrik}{Ostrik}) \hypertarget{relation_to_pivotal_and_spherical_categories}{}\subsubsection*{{Relation to pivotal and spherical categories}}\label{relation_to_pivotal_and_spherical_categories} Fusion categories were first systematically studied by [[Etingof]], Nikshych and [[Ostrik]] in \href{http://arxiv.org/abs/math/0203060}{On fusion categories}. This paper listed many examples and proved many properties of fusion categories. One of the important conjectures made in that paper was the following: \begin{theorem} \label{}\hypertarget{}{} Every fusion category admits a [[pivotal structure]]. \end{theorem} Providing a certain condition is satisfied, a pivotal structure on a fusion category can be shown to correspond to a `twisted' monoidal natural endotransformation of the identity functor on the category, where the twisting is given by the [[pivotal symbols]]. \hypertarget{RelationtoTQFT}{}\subsubsection*{{Relation to extended 3d TQFT}}\label{RelationtoTQFT} Given the data of a [[fusion category]] one can build a 3d [[extended TQFT]] by various means. This is explained by the fact, see below, that fusion categories are (probably precisely) the [[fully dualizable object]]s in the [[3-category]] $MonCat$ of [[monoidal categories]]. By the [[homotopy hypothesis]] this explains how they induce [[3d TQFT]]s. \begin{defn} \label{MonCat}\hypertarget{MonCat}{} Write $MonCat_{bim}$ for the [[(infinity,n)-category|(infinity,3)-category]] which has as \begin{itemize}% \item objects [[monoidal categories]], \item morphism [[bimodule]]s of these, \item and so on. \end{itemize} \end{defn} \begin{prop} \label{}\hypertarget{}{} With its natural [[tensor product]], $MonCat$ is a [[symmetric monoidal (infinity,n)-category|symmetric monoidal (infinity,3)-category]]. \end{prop} \begin{prop} \label{FusionCategoriesAreFullyDualizable}\hypertarget{FusionCategoriesAreFullyDualizable}{} A monoidal category which is fusion is [[fully dualizable object|fully dualizable]] in the [[(infinity,n)-category|(infinity,3)-category]] $MonCat_{bim}$, def. \ref{MonCat}. \end{prop} This is due to (\hyperlink{DSPS13}{Douglas \& Schommer-Pries \& Snyder 13}). \begin{remark} \label{}\hypertarget{}{} Via the [[cobordism theorem]] prop. \ref{FusionCategoriesAreFullyDualizable} implies that fusion categories encode [[extended TQFTs]] on 3-dimensional [[framed manifold|framed]] [[cobordisms]], while their $O(3)$-[[homotopy fixed points]] encode extended 3d TQFTs on general (not framed) cobordisms. These 3d TQFTs hence arise from similar algebraic data as the [[Turaev-Viro model]] and the [[Reshetikhin-Turaev construction]], however there are various slight differences. See (\hyperlink{DSPS13}{Douglas \& Schommer-Pries \& Snyder 13, p. 5}). \end{remark} \hypertarget{suggestions}{}\subsection*{{Suggestions}}\label{suggestions} Here are three things such that it'd be awesome if they were sorted out on this page: \begin{enumerate}% \item Kuperberg's theorem saying that [[abelian category|abelian]] semisimple implies [[linear category|linear]] over some field. \href{http://arxiv.org/abs/math/0209256}{Finite, connected, semisimple, rigid tensor categories are linear} \item Some correct version of the claim that abelian semisimple is the same as [[idempotent complete category|idempotent complete]] and nondegenerate. \href{http://mathoverflow.net/questions/245/are-abelian-nondegenerate-tensor-categories-semisimple}{Math Overflow question} \item Good notation distinguishing [[simple object|simple]] versus [[absolutely simple object|absolutely simple]] (is $End(V) = k$ or just $V$ has no nontrivial proper subobjects). \end{enumerate} Together 1 and 2 let you go between the two different obvious notions of semisimple which seem a bit muddled here when I clicked through the links. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item \textbf{fusion category} [[fusion ring]], [[Frobenius-Perron dimension]] \item [[pivotal category]] \item [[spherical category]] \item [[Deligne's theorem on tensor categories]] \item [[graded fusion category]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Some classical references include \begin{itemize}% \item [[P. Etingof]], D. Nikshych and V. Ostrik, \href{http://arxiv.org/abs/math/0203060}{On fusion categories}. \item [[Pavel Etingof]] and [[Damien Calaque]], \href{http://arxiv.org/abs/math/0401246}{Lectures on tensor categories}. \item [[Michael Müger]], \href{http://arxiv.org/abs/0804.3587}{Tensor categories: A selective guided tour}. \item [[Pavel Etingof]], D. Nikshych and V. Ostrik, \emph{Fusion categories and homotopy theory} , Quantum Topology, 1(2010), 209-273. (Earlier version available as \href{http://arxiv.org/PS_cache/arxiv/pdf/0909/0909.3140v2.pdf}{ArXiv:0909.3140} \end{itemize} A review is also in chapter 6 of \begin{itemize}% \item [[Bruce Bartlett]], \href{http://arxiv.org/abs/0901.3975}{On unitary 2-representations of finite groups and topological quantum field theory}. \end{itemize} The [[Tannaka duality]] to [[weak Hopf algebras]] is discussed in \begin{itemize}% \item Takahiro Hayashi, \emph{A canonical Tannaka duality for finite seimisimple tensor categories} (\href{http://arxiv.org/abs/math/9904073}{arXiv:math/9904073}) \item [[Victor Ostrik]], \emph{Module categories, weak Hopf algebras and modular invariants} (\href{http://arxiv.org/abs/math/0111139}{arXiv:math/0111139}) \end{itemize} The relation to [[3d TQFT]] is clarified via the [[cobordism hypothesis]] in \begin{itemize}% \item [[Chris Douglas]], [[Chris Schommer-Pries]], [[Noah Snyder]], \emph{The Structure of Fusion Categories via 3D TQFTs} (\href{https://sites.google.com/site/chrisschommerpriesmath/Home/recent-and-upcoming-talks/UPennTalk.pdf?attredirects=0}{talk pdf}) \item [[Chris Douglas]], [[Chris Schommer-Pries]], [[Noah Snyder]], \emph{Dualizable tensor categories} (\href{http://arxiv.org/abs/1312.7188}{arXiv:1312.7188}) \end{itemize} and for the case of [[modular tensor categories]] in \begin{itemize}% \item [[Bruce Bartlett]], [[Christopher Douglas]], [[Chris Schommer-Pries]], [[Jamie Vicary]], \emph{Modular categories as representations of the 3-dimensional bordism 2-category} (\href{http://arxiv.org/abs/1509.06811}{arXiv:1509.06811}) \end{itemize} For some discussion see \begin{itemize}% \item Math Overflow, \emph{\href{http://mathoverflow.net/questions/6180/why-are-fusion-categories-interesting}{Why are fusion categories interesting?}} . \end{itemize} [[!redirects fusion categories]] \end{document}