\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{game theory} Game theory is the study of strategic interaction between agents. It is often used for mathematical modelling of real-world situations in which agents interact, including in microeconomics, computer science and ecology. Game theory should not be confused with [[game semantics]], which has some terminology and history in common but has little overlap in practice. \hypertarget{via_coalgebras}{}\subsection*{{Via coalgebras}}\label{via_coalgebras} Several authors have approached game theory through coalgebraic systems theory, defining games as elements of the [[terminal coalgebra for an endofunctor|terminal coalgebra]] of an appropriate functor. This puts the concepts of \emph{state} and \emph{state transition} in a game to centre stage. It is closely related to \href{https://en.wikipedia.org/wiki/Extensive-form_game}{extensive form games}, whereby a game is defined by its tree of plays. Perhaps the first paper to use this approach is \hyperlink{Pavlovic09}{Pavlovic 2009}. Others are \hyperlink{AbramskyWinschel17}{Abramsky and Winschel 2017} and \hyperlink{Ghani18a}{Ghani, Kupke, Lambert and Forsberg 2018}, the latter of which connects coalgebraic game theory with compositional game theory. \hypertarget{compositional_game_theory}{}\subsection*{{Compositional game theory}}\label{compositional_game_theory} Open games approach games as open systems, making them morphisms of a [[symmetric monoidal category]] which can be depicted as [[string diagram|string diagrams]], in the spirit of [[applied category theory]]. See \hyperlink{Ghani18b}{Ghani, Hedges, Winschel and Zahn 2018}. Open games have a close connection to [[lens (in computer science)|lenses]]. This can be used to situate open games inside a symmetric monoidal [[double category]] in a game-theoretically interesting way, see \hyperlink{Hedges18}{Hedges 2018}. \hypertarget{homotopy_and_game_theory}{}\subsection*{{Homotopy and game theory}}\label{homotopy_and_game_theory} [[homotopy|Homotopies]] between strategy profiles have been considered as a practical method to compute Nash equilibria (see \hyperlink{Herings10}{Herings and Peeters 2010}). This has never been studied categorically, but it suggests a possible route towards a higher-categorical approach to game theory. \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item $n$Cafe: \href{http://golem.ph.utexas.edu/category/2009/11/combinatorialgame_categories.html}{combinatorial game categories}, \href{http://golem.ph.utexas.edu/category/2012/07/zerodeterminant_strategies_in.html}{zero determinant strategies} in the iterated prisoner's dilemma \item wikipedia: \href{https://secure.wikimedia.org/wikipedia/en/wiki/Game_theory}{game theory}, \href{http://en.wikipedia.org/wiki/Combinatorial_game_theory}{combinatorial game theory}, \href{http://en.wikipedia.org/wiki/Dominance_%28game_theory%29}{dominance (game theory)}, \href{http://en.wikipedia.org/wiki/Nash_equilibrium}{Nash equilibrium}, \href{http://en.wikipedia.org/wiki/Wild_type}{wild type} \item William Press, Freeman Dyson, \emph{Iterated prisoner's dilemma contains strategies that dominate any evolutionary opponent}, \href{http://www.pnas.org/content/early/2012/05/16/1206569109.full.pdf+html}{PNAS open access}, March 2012. \item [[J.R.B. Cockett]], G.S.H. Cruttwell and K. Saff, \emph{Combinatorial game categories}, \href{https://www.mta.ca/uploadedFiles/Community/Bios/Geoff_Cruttwell/CGC.pdf}{pdf} \item [[André Joyal]], \emph{Remarques sur la th\'e{}orie des jeux \`a{} deux personnes}, Gazette des Sciences Mathematiques du Qu\'e{}bec 1(4):46--52, 1977; Robin Houston's rough translation \href{http://www.ma.man.ac.uk/~rhouston/Joyal-games.ps}{ps} \item Andr\'e{} Joyal, \emph{Free lattices, communication and money games}, in: Logic and scientific methods. Volume one of the proceedings of the tenth international congress of logic, methodology and philosophy of science, Florence, Italy, Synth. Libr. 259, pages 29--68. Dordrecht: Kluwer Academic Publishers, 1997. \item [[Dusko Pavlovic]], \emph{A semantical approach to equilibria and rationality}, CALCO 2009. (\href{https://arxiv.org/abs/0905.3548}{arXiv:0905.3548}, \href{http://dx.doi.org/10.1007/978-3-642-03741-2_22}{doi:10.1007/978-3-642-03741-2\_22}) \item [[Samson Abramsky]] and [[Viktor Winschel]], \emph{Coalgebraic analysis of subgame-perfect equilibria in infinite games without discounting}, Mathematical structures in computer science 2017. (\href{https://arxiv.org/abs/1210.4537}{arXiv:1210.4537}, \href{https://doi.org/10.1017/S0960129515000365}{doi:10.1017/S0960129515000365}) \item [[Neil Ghani]], [[Clemens Kupke]], [[Alasdair Lambert]] and [[Fredrik Nordvall Forsberg]], \emph{A compositional treatment of iterated open games}, Theoretical computer science 2018. (\href{https://arxiv.org/abs/1711.07968}{arXiv:1711.07968}, \href{https://doi.org/10.1016/j.tcs.2018.05.026}{doi:10.1016/j.tcs.2018.05.026}) \item [[Neil Ghani]], [[Jules Hedges]], [[Viktor Winschel]] and [[Philipp Zahn]], \emph{Compositional game theory}, LiCS 2018. (\href{https://arxiv.org/abs/1603.04641}{arXiv:1603.04641}, \href{https://doi.org/10.1145/3209108.3209165}{doi:10.1145/3209108.3209165}) \item [[Jules Hedges]], \emph{Morphisms of open games}, MFPS 2018. (\href{https://arxiv.org/abs/1711.07059}{arXiv:1711.07059}, \href{https://doi.org/10.1016/j.entcs.2018.11.008}{doi:10.1016/j.entcs.2018.11.008}) \item P. Jean-Jacques Herings and Ronald Peeters, \emph{Homotopy methods to compute equilibria in game theory}, Economic Theory 2010. (\href{https://doi.org/10.1007/s00199-009-0441-5}{doi:10.1007/s00199-009-0441-5}) \end{itemize} \end{document}