\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{general linear group} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{group_theory}{}\paragraph*{{Group Theory}}\label{group_theory} [[!include group theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{AsAtopologicalGroup}{As a topological group}\dotfill \pageref*{AsAtopologicalGroup} \linebreak \noindent\hyperlink{definition_2}{Definition}\dotfill \pageref*{definition_2} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{AsALieGroup}{As a Lie group}\dotfill \pageref*{AsALieGroup} \linebreak \noindent\hyperlink{as_an_algebraic_group}{As an algebraic group}\dotfill \pageref*{as_an_algebraic_group} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Given a [[field]] $k$, the \textbf{general linear group} $GL(n,k)$ (or $GL_n(k)$) is the [[group]] of [[invertible morphism|invertible]] [[linear maps]] from the [[vector space]] $k^n$ to itself. It may canonically be identified with the group of $n\times n$ [[matrix|matrices]] with entries in $k$ having nonzero [[determinant]]. \hypertarget{AsAtopologicalGroup}{}\subsubsection*{{As a topological group}}\label{AsAtopologicalGroup} \hypertarget{context_2}{}\subsubsection*{{Context}}\label{context_2} \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] Let $k = \mathbb{R}$ or $= \mathbb{C}$ be the [[real numbers]] or the [[complex numbers]] equipped with their [[Euclidean topology]]. \hypertarget{definition_2}{}\paragraph*{{Definition}}\label{definition_2} \begin{defn} \label{GLnAsTopologicalGroup}\hypertarget{GLnAsTopologicalGroup}{} \textbf{(general linear group as a topological group)} For $n \in \mathbb{N}$, as a [[topological group]] the \emph{general linear group} $GL(n, k)$ is defined as follows. The underlying group is the [[group]] of [[real number|real]] or [[complex numbers|complex]] $n \times n$ [[matrices]] whose [[determinant]] is non-vanishing \begin{displaymath} GL(n,k) \;\coloneqq\; \left( A \in Mat_{n \times n}(k) \; \vert \; det(A) \neq 0 \right) \end{displaymath} with group operation given by [[matrix multiplication]]. The [[topological space|topology]] on this set is the [[subspace topology]] as a subset of the [[Euclidean space]] of [[matrices]] \begin{displaymath} Mat_{n \times n}(k) \simeq k^{(n^2)} \end{displaymath} with its [[metric topology]]. \end{defn} \begin{lemma} \label{GLnTopologicalWellDefined}\hypertarget{GLnTopologicalWellDefined}{} \textbf{(group operations are continuous)} Definition \ref{GLnAsTopologicalGroup} is indeed well defined in that the group operations on $GL(n,k)$ are indeed [[continuous functions]] with respect to the given topology. \end{lemma} \begin{proof} Observe that under the identification $Mat_{n \times n}(k) \simeq k^{(n^2)}$ [[matrix multiplication]] is a [[polynomial function]] \begin{displaymath} k^{(n^2)} \times k^{(n^2)} \simeq k^{ 2 n^2 } \longrightarrow k^{(n^2)} \simeq Mat_{n \times n}(k) \,. \end{displaymath} Similarly [[inverse matrix|matrix inversion]] is a [[rational function]]. Now [[rational functions are continuous]] on their [[domain]] of definition, and since a real matrix is invertible previsely if its determinant is non-vanishing, the domain of definition for matrix inversion is precisely $GL(n,k) \subset Mat_{n \times n}(k)$. \end{proof} \begin{defn} \label{}\hypertarget{}{} \textbf{(stable general linear group)} The evident [[tower]] of embeddings \begin{displaymath} k \hookrightarrow k^2 \hookrightarrow k^3 \hookrightarrow \cdots \end{displaymath} induces a corresponding [[tower diagram]] of embedding of the general linear groups (def. \ref{GLnAsTopologicalGroup}) \begin{displaymath} GL(1,k) \hookrightarrow GL(2,k) \hookrightarrow GL(3,k) \hookrightarrow \cdots \,. \end{displaymath} The [[colimit]] over this [[diagram]] in the [[category]] of [[topological group]] is called the \emph{stable general linear group} denoted \begin{displaymath} GL(k) \;\coloneqq\; \underset{\longrightarrow}{\lim}_n GL(n,k) \,. \end{displaymath} \end{defn} \hypertarget{properties}{}\paragraph*{{Properties}}\label{properties} \begin{example} \label{AsSubspaceOfTheMappingSpace}\hypertarget{AsSubspaceOfTheMappingSpace}{} \textbf{(as a [[subspace]] of the [[compact-open topology|mapping space]])} The [[topological space|topology]] induced on the real general linear group when regarded as a [[topological subspace]] of [[Euclidean space]] with its [[metric topology]] \begin{displaymath} GL(n,\mathbb{R}) \subset Mat_{n \times n}(\mathbb{R}) \simeq \mathbb{R}^{(n^2)} \end{displaymath} (as in def. \ref{GLnAsTopologicalGroup}) coincides with the topology induced by regarding the general linear group as a [[subspace]] of the [[mapping space]] $Maps(k^n, k^n)$, \begin{displaymath} GL(n,\mathbb{R}) \subset Maps(k^n, k^n) \end{displaymath} i.e. the set of all [[continuous functions]] $k^n \to k^n$ equipped with the [[compact-open topology]]. \end{example} \begin{proof} On the one had, the [[universal property]] of the [[mapping space]] (\href{Introduction+to+Topology+--+1#UniversalPropertyOfMappingSpace}{this prop.}) gives that the inclusion \begin{displaymath} GL(n, \mathbb{R}) \to Maps(\mathbb{R}^n, \mathbb{R}^n) \end{displaymath} is a [[continuous function]] for $GL(n,\mathbb{R})$ equipped with the [[Euclidean space|Euclidean]] [[metric topology]], because this is the [[adjunct]] of the defining continuous [[action]] map \begin{displaymath} GL(n, \mathbb{R}) \times \mathbb{R}^n \to \mathbb{R}^n \,. \end{displaymath} This implies that the [[Euclidean space|Euclidean]] [[metric topology]] on $GL(n,\mathbb{R})$ is equal to or [[finer topology|finer]] than the subspace topology coming from $Map(\mathbb{R}^n, \mathbb{R}^n)$. We conclude by showing that it is also equal to or [[coarser topology|coarser]], together this then implies the claims. Since we are speaking about a subspace topology, we may consider the open subsets of the ambient Euclidean space $Mat_{n \times n}(\mathbb{R}) \simeq \mathbb{R}^{(n^2)}$. Observe that a [[neighborhood base]] of a linear map or matrix $A$ consists of sets of the form \begin{displaymath} U_A^\epsilon \;\coloneqq\; \left\{B \in Mat_{n \times n}(\mathbb{R}) \,\vert\, \underset{{1 \leq i \leq n}}{\forall}\; |A e_i - B e_i| \lt \epsilon \right\} \end{displaymath} for $\epsilon \in (0,\infty)$. But this is also a [[base for the topology|base]] element for the [[compact-open topology]], namely \begin{displaymath} U_A^\epsilon \;=\; \bigcap_{i = 1}^n V_i^{K_i} \,, \end{displaymath} where $K_i \coloneqq \{e_i\}$ is a [[singleton]] and $V_i \coloneqq B^\circ_{A e^i}(\epsilon)$ is the [[open ball]] of [[radius]] $\epsilon$ around $A e^i$. \end{proof} \begin{prop} \label{ConnectednessOfGeneralLinearGroup}\hypertarget{ConnectednessOfGeneralLinearGroup}{} \textbf{(connectedness properties of the general linear group)} For all $n \in \mathbb{N}$ \begin{enumerate}% \item the complex general linear group $GL(n,\mathbb{C})$ is [[path-connected topological space|path-connected]]; \item the real general linear group $GL(n,\mathbb{R})$ is not [[path-connected topological space|path-connected]]. \end{enumerate} \end{prop} \begin{proof} First observe that $GL(1,k) = k \setminus \{0\}$ has this property: \begin{enumerate}% \item $\mathbb{C} \setminus \{0\}$ is path-connected, \item $\mathbb{R} \setminus \{0\} = (-\infty,0) \sqcup (0,\infty)$ is not path connected. \end{enumerate} Now for the general case: \begin{enumerate}% \item For $k = \mathbb{C}$: every invertible complex matrix is diagonalizable by a sequence of elementary matrix operations (\href{inverse+matrix#FundamentalTheoremOfLinearAlgebra}{this prop.}). Each of these is clearly path-connected to the identity. Finally the subspace of invertible [[diagonal matrices]] is the [[product topological space]] $\underset{ \{1, \cdots, n\} }{\prod} (\mathbb{C} \setminus \{0\})$ and hence connected (by \href{ProductSpaceOfConnectedSpacesIsConnected}{this prop.}, since each factor space is). \item For $k = \mathbb{R}$: the [[determinant]] function is a [[continuous function]] $GL(n,k) \to \mathbb{R} \setminus \{0\}$, and since the [[codomain]] is not path connected, the domain cannot be either. \end{enumerate} \end{proof} \begin{prop} \label{TopologicalGeneralLinearGroup}\hypertarget{TopologicalGeneralLinearGroup}{} \textbf{(compactness properties of the general linear group)} The [[topological group|topological]] general linear group $GL(n,k)$ (def. \ref{GLnAsTopologicalGroup}) is \begin{enumerate}% \item not [[compact topological space|compact]]; \item [[locally compact topological space|locally compact]]; \item [[paracompact Hausdorff topological space|paracompact Hausdorff]]. \end{enumerate} \end{prop} \begin{proof} Observe that \begin{displaymath} GL_n(n,k) \subset Mat_{n \times n}(k) \simeq k^{(n^2)} \end{displaymath} is an [[open subset|open]] [[subspace]], since it is the [[pre-image]] under the [[determinant]] function (which is a [[polynomial]] and hence continuous, as in the proof of lemma \ref{GLnTopologicalWellDefined}) of the of the open subspace $k \setminus \{0\} \subset k$. As an open subspace of Euclidean space, $GL(n,k)$ is not compact, by the [[Heine-Borel theorem]]. As Euclidean space is Hausdorff, and since every [[subspace]] of a Hausdorff space is again Hausdorff, so $Gl(n,k)$ is Hausdorff. Similarly, as Euclidean space is [[locally compact topological space|locally compact]] and since an open subspace of a locally compact space is again locally compact, it follows that $GL(n,k)$ is locally compact. From this it follows that $GL(n,k)$ is paracompact, since locally compact topological groups are paracompact (\href{topological+group#ConnectedLocallyCompactTopologicalGroupsAreSigmaCompact}{this prop.}). \end{proof} \hypertarget{AsALieGroup}{}\subsubsection*{{As a Lie group}}\label{AsALieGroup} \begin{defn} \label{}\hypertarget{}{} Since the general linear group as a [[topological group]] (def. \ref{GLnAsTopologicalGroup}) is an [[open subspace]] of [[Euclidean space]] (proof of prop. \ref{TopologicalGeneralLinearGroup}) it inherits the structure of a [[smooth manifold]] (by \href{differentiable+manifold#OpenSubsetsOfDifferentiableManifoldsAreDifferentiableManifolds}{this prop.}). The group operations (being [[rational functions]]) are [[smooth functions]] with respect to this smooth structure. This is the general linear group $GL(n,\mathbb{R})$ as a \emph{[[Lie group]]}. \end{defn} \hypertarget{as_an_algebraic_group}{}\subsubsection*{{As an algebraic group}}\label{as_an_algebraic_group} This group can be considered as a (quasi-affine) sub[[variety]] of the [[affine scheme|affine space]] $M_{n\times n}(k)$ of square matrices of size $n$ defined by the condition that the [[determinant]] of a matrix is nonzero. It can be also presented as an affine subvariety of the affine space $M_{n \times n}(k) \times k$ defined by the equation $\det(M)t = 1$ (where $M$ varies over the factor $M_{n \times n}(k)$ and $t$ over the factor $k$). This [[variety]] is an algebraic $k$-group, and if $k$ is the field of real or complex numbers it is a [[Lie group]] over $k$. One may in fact consider the set of invertible matrices over an arbitrary unital [[ring]], not necessarily commutative. Thus $GL_n: R\mapsto GL_n(R)$ becomes a [[presheaf]] of [[group]]s on $Aff=Ring^{op}$ where one can take rings either in commutative or in noncommutative sense. In the commutative case, this functor defines a [[group scheme]]; it is in fact the affine group scheme represented by the commutative ring $R = \mathbb{Z}[x_{11}, \ldots, x_{n n}, t]/(det(X)t - 1)$. Coordinate rings of general linear groups and of special general linear groups have [[quantum group|quantum deformations]] called [[quantum linear groups]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} Over [[finite fields]] \begin{itemize}% \item [[GL(2,3)]] \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[translation group]], [[affine group]] \item [[Gauss decomposition]], \item [[special linear group]], [[projective linear group]] \item [[orthogonal group]], [[unitary group]], \item [[Borel subgroup]], [[flag variety]] \item [[group of units]] \item [[jet group]] \item [[general linear supergroup]], [[quantum linear group]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item O.T. O'Meara, \emph{Lectures on Linear Groups}, Amer. Math. Soc., Providence, RI, 1974. \item B. Parshall, J.Wang, \emph{Quantum linear groups}, Mem. Amer. Math. Soc. 89(1991), No. 439, vi+157 pp. \end{itemize} [[!redirects general linear group]] [[!redirects general linear groups]] \end{document}