\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{generalized Reedy category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{model_category_theory}{}\paragraph*{{Model category theory}}\label{model_category_theory} [[!include model category theory - contents]] \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{category_theory}{}\paragraph*{{$(\infty,1)$-Category theory}}\label{category_theory} [[!include quasi-category theory contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{generalized_reedy_categories}{Generalized Reedy categories}\dotfill \pageref*{generalized_reedy_categories} \linebreak \noindent\hyperlink{prima_facie_comparison_between_cisinski_and_bergermoerdijk}{Prima Facie comparison between Cisinski and Berger-Moerdijk.}\dotfill \pageref*{prima_facie_comparison_between_cisinski_and_bergermoerdijk} \linebreak \noindent\hyperlink{presheaves_on_reedy_categories}{Presheaves on Reedy categories.}\dotfill \pageref*{presheaves_on_reedy_categories} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{NormalMorphisms}{Normal monomorphisms (Cisinski)}\dotfill \pageref*{NormalMorphisms} \linebreak \noindent\hyperlink{model_category_structure_on_presheaves}{Model category structure on presheaves}\dotfill \pageref*{model_category_structure_on_presheaves} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{bergermoerdijk_type}{Berger-Moerdijk type}\dotfill \pageref*{bergermoerdijk_type} \linebreak \noindent\hyperlink{specific_examples}{Specific examples}\dotfill \pageref*{specific_examples} \linebreak \noindent\hyperlink{the_class_of_crossed_group_sites}{The class of crossed group sites}\dotfill \pageref*{the_class_of_crossed_group_sites} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of \emph{[[Reedy category]]}, though useful, is in some contexts inconveniently restrictive, since no Reedy category can contain any nonidentity [[isomorphisms]]. This is problematic for many ``[[geometric shape for higher structures|shape]] categories'' such as Connes' [[category of cycles]] $\Lambda$, [[Segal's category Gamma|Segal's category]] $\Gamma$, the [[tree category]] $\Omega$, and so on. The notion of \emph{generalized Reedy category} lifts this restriction, while maintaining the truth of the main theorem about Reedy categories: the existence of the [[Reedy model structure]]. In fact, there are two notions of generalized Reedy category in the literature. Cisinski's ``cat\'e{}gories squelletiques'' (Ch. 8 in \hyperlink{Cisinski}{\emph{PCMH}}) provide a natural generalization of the [[simplex category]], so that diagrams based on them behave much like [[simplicial objects]]. They were introduced primarily for the purposes of modeling [[homotopy types]]. The \hyperlink{BergerMoerdijk}{``generalized Reedy categories''} of Berger and Moerdijk are a strictly broader generalization suitable e.g. for describing [[dendroidal sets]]. They were introduced for the purposes of modelling more general classes of structure, particularly [[operads]]. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} \hypertarget{generalized_reedy_categories}{}\subsubsection*{{Generalized Reedy categories}}\label{generalized_reedy_categories} \begin{defn} \label{BMGeneralizedReedyCategory}\hypertarget{BMGeneralizedReedyCategory}{} A \textbf{Berger-Moerdijk generalized Reedy category} is a [[category]] $R$ together with two [[wide subcategories]] $R_+$ and $R_-$, and a [[function]] $d\colon ob(R)\to \alpha$ called \emph{degree}, for some [[ordinal]] $\alpha$, such that \begin{enumerate}% \item every non-isomorphism in $R_+$ raises degree, \item every non-isomorphism in $R_-$ lowers degree, \item every isomorphism in $R$ preserves degree, \item $R_+\cap R_-$ is the [[core]] of $R$ (equivalently, every isomorphism is in both $R_+$ and $R_-$, i.e. they are not just wide but [[pseudomonic functor|pseudomonic]] subcategories), \item every morphism $f$ factors as a map in $R_-$ followed by a map in $R_+$, uniquely up to isomorphism, \item if $f\in R_-$ and $\theta$ is an isomorphism such that $\theta f = f$, then $\theta = 1$ (isomorphisms see the maps in $R_-$ as [[epimorphism|epis]]). \end{enumerate} The last condition implies that the isomorphism in the penultimate condition must be unique. It is not self-dual, but has an obvious dual version. A BM generalized Reedy category is said to be \textbf{dualizable} if it satisfies both this condition and its dual. \end{defn} \begin{defn} \label{}\hypertarget{}{} A [[morphism]] of generalized Reedy category $S \to R$ is a [[functor]] whish takes $S_+$ to $R_+$, takes $S_-$ to $R_-$ and preserves the degree. \end{defn} This appears as (\hyperlink{BergerMoerdijk}{Berger-Moerdijk, def. 1.1}). \begin{remark} \label{}\hypertarget{}{} Generalized Reedy category structures (as opposed to ordinary structures!) can always be transported along [[equivalence of categories]]. \end{remark} \begin{defn} \label{}\hypertarget{}{} For a \textbf{Cisinski generalized Reedy category}, the final condition in def. \ref{BMGeneralizedReedyCategory} is replaced by \begin{itemize}% \item every morphism in $R_-$ admits a [[section]], and two parallel morphisms in $R_-$ are equal precisely when they have the same sections. \end{itemize} \end{defn} For clarity, in the context of generalized Reedy categories, an ordinary [[Reedy category]] may be called a \emph{strict Reedy category}. \hypertarget{prima_facie_comparison_between_cisinski_and_bergermoerdijk}{}\subsubsection*{{Prima Facie comparison between Cisinski and Berger-Moerdijk.}}\label{prima_facie_comparison_between_cisinski_and_bergermoerdijk} The only difference between the Cisinski notion and the Berger-Moerdijk notion is in the final condition -- let's say, between the \emph{Cisinski condition} and the \emph{Berger-Moerdijk condition}. It's easy to see that the Cisinski condition is \textbf{strictly stronger} than the Berger-Moerdijk condition. The Berger-Moerdijk condition asks that $R_-$ arrows be something less than epimorphic in $R$. By comparison, the Cisinski condition asks that $R_-$ arrows be \emph{actually} epimorphic in $R$, in fact that they be \emph{split} epimorphic, and more. \hypertarget{presheaves_on_reedy_categories}{}\subsubsection*{{Presheaves on Reedy categories.}}\label{presheaves_on_reedy_categories} For $R$ a generalized Reedy category, and $X$ a [[presheaf]] on $R$, there are the evident analogue notions of $n$-cells in $X$, degenerate $n$-cells, faces, boundaries, horns, etc. (..) \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{NormalMorphisms}{}\subsubsection*{{Normal monomorphisms (Cisinski)}}\label{NormalMorphisms} Let $A$ be a Cisinski generalized Reedy category. \begin{defn} \label{}\hypertarget{}{} An object $a \in A$ is called \emph{degenerate} precisely if there is a non-isomorphism out of $a$ in $A_-$. \end{defn} See (\hyperlink{Cisinski}{Cisinski, prop. 8.1.9}). \begin{prop} \label{}\hypertarget{}{} For every object $a \in A$ there exists a morphism $\pi : a \to b$ in $A_-$ with $b$ non-degenerate. \end{prop} This is (\hyperlink{Cisisnki}{Cisinski, prop. 8.1.13}). Let $X$ be a [[presheaf]] over $A$. \begin{defn} \label{}\hypertarget{}{} For $a \in A$, a cell $v \in X(a)$ is called \textbf{degenerate} precisely if there is a morphism $\alpha : a \to a'$ in $A_-$ and a cell $u \in$ \begin{displaymath} X(\alpha) : u \mapsto v \end{displaymath} \end{defn} See (\hyperlink{Cisinski}{Cisinski, cor. 8.1.10}). Write $A/X$ for the [[category of elements]] of $X$. \begin{defn} \label{}\hypertarget{}{} For $a \in A$ an $a$-cell $v \in X(a)$ is called \textbf{dominant} if $(a,v) \in A/X$ has trivial [[automorphism group]]. An $a$-cell $u \in X(a)$ is called \textbf{normal} if there is a morphism $\alpha : a \to b$ in $A_-$ with $b$ non-degenerate, and a dominant $b$-cell $v \in X(b)$, such that \begin{displaymath} X(\alpha) : v \mapsto u \,. \end{displaymath} The presheaf $X$ is called \textbf{normal} if all its cells are normal. \end{defn} See (\hyperlink{Cisinski}{Cisinski, 8.1.23}). \begin{remark} \label{}\hypertarget{}{} A non-degenerate cell is normal precisely if it is dominant. \end{remark} \begin{prop} \label{}\hypertarget{}{} $X$ is normal precisely if all its non-degenerate cells are dominant. \end{prop} This is (\hyperlink{Cisinski}{Cisinski, cor. 8.1.25}). Let $f : X \to Y$ be a morphism of [[presheaves]] over $A$. \begin{defn} \label{}\hypertarget{}{} The morphism $f : X \to Y$ is called \textbf{normal} if every cell of $Y$ not in the [[image]] of $f$ is dominant. \end{defn} This is (\hyperlink{Cisinski}{Cisinski, 8.1.30}). \begin{example} \label{}\hypertarget{}{} Every [[monomorphism]] between normal presheaves is normal. \end{example} \begin{prop} \label{}\hypertarget{}{} The class of normal monomorphisms in $PSh(A)$ is closed under \begin{itemize}% \item [[pushouts]]; \item [[transfinite composition]]; \item [[retracts]]. \end{itemize} In fact, the class of normal monomorphisms is that generated under these operations from the boundary inclusions $I := \{\partial a \hookrightarrow a\}$. \end{prop} This is (\hyperlink{Cisinski}{Cisinski, prop. 8.1.31, 8.1.35}). \hypertarget{model_category_structure_on_presheaves}{}\subsubsection*{{Model category structure on presheaves}}\label{model_category_structure_on_presheaves} (\ldots{}) [[generalized Reedy model structure]] \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{bergermoerdijk_type}{}\subsubsection*{{Berger-Moerdijk type}}\label{bergermoerdijk_type} \hypertarget{specific_examples}{}\paragraph*{{Specific examples}}\label{specific_examples} \begin{itemize}% \item Any [[Reedy category]] is a generalized Reedy category, in particular the [[simplex category]]. \item Any (finite) [[groupoid]] $G$ is also a generalized Reedy category, with $G_+ = G_- = G$. \item Connes' [[category of cycles]] $\Lambda$. \item [[Segal's category Gamma|Segal's category]] $\Gamma$. \item The Moerdijk-Weiss [[tree category]] $\Omega$ is generalized Reedy. The degree is given by the number of vertices in a tree. See also the discussion at \emph{[[dendroidal set]]} and \emph{[[model structure on dendroidal sets]]}. \item Any generalized [[direct category]] or generalized [[inverse category]] is also a generalized Reedy category, in which either $R_-$ or $R_+$ consists only of the isomorphisms. \end{itemize} \hypertarget{the_class_of_crossed_group_sites}{}\paragraph*{{The class of crossed group sites}}\label{the_class_of_crossed_group_sites} \begin{defn} \label{}\hypertarget{}{} For $S$ a [[small category]], a \textbf{crossed $S$-group} is a [[presheaf]] $G : S^{op} \to Set$ equipped with \begin{enumerate}% \item for each object $s \in S$ a group structure on $G_s$; \item for all $s, r\in S$ a left $G_r$-[[action]] on the [[hom-set]] $S(s,r)$ ; \end{enumerate} such that for all morphisms $\alpha : s \to r$ and $\beta : t \to s$ in $S$ and $g,h \in G_r$ we have \begin{enumerate}% \item $g_*( \alpha \circ \beta) = g_*(\alpha) \circ \alpha^*(g)_* \beta$; \item $g_* (id_r) = id_r$; \item $\alpha^* (g \cdot h) = h_*(\alpha)^*(g)\cdot \alpha^*(h)$; \item $\alpha^*(e_r) = e_s$; \end{enumerate} where $g_*$, $h_*$ denotes the group action and $\alpha^* : G_r \to G_s$ the presheaf map. The \textbf{total category} $S G$ of an crossed $S$-group $G$ is the category with the same objects as $S$, and with morphisms $r \to s$ being pairs $(\alpha, g) \in S(s,r)\times G_r$ and with composition defined by \begin{displaymath} (\alpha, g) \circ (\beta, h) = (\alpha \cdot g_*(\beta), \beta^*(g) \cdot h) \,. \end{displaymath} \end{defn} (\hyperlink{BergerMoerdijk}{Ber-Moe, def. 2.1}). \begin{defn} \label{}\hypertarget{}{} If $S$ is equipped with a generalized Reedy structure, then an $S$-crossed group $G$ is called \textbf{compatible} with that generalized Reedy structure if \begin{enumerate}% \item the $G$-action respects $S^+$ and $S^-$; \item if $\alpha : r \to s$ is in $S^-$ and $g \in G_s$ such that $\alpha^* (g) = e_r$ and $g_*(\alpha) = \alpha$, then $g = e_s$. \end{enumerate} \end{defn} \begin{example} \label{}\hypertarget{}{} The category $\Omega_{pl}$ of planar finite rooted [[trees]] is a strict [[Reedy category]]. The category $\Omega$ of non-planar finite rooted [[trees]] is the total category of an $\Omega_{pl}$-crossed group which to a planar tree $T$ assigns its group of non-planar automorphisms. \end{example} \begin{prop} \label{}\hypertarget{}{} Let $S$ be a strict [[Reedy category]] and let $G$ be a compatible $S$-crossed group. Then there exists a unique dualizabe generalized Reedy structure on $S G$ for which the embedding $S \hookrightarrow S G$ is a morphism of generalized Reedy categories. \end{prop} (\hyperlink{BergerMoerdijk}{Ber-Moe, prop. 2.10}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item A ``more generalized'' notion is a [[c-Reedy category]]. \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Cisinski's notion of generalized Reedy category appears as def 8.1.1 in \begin{itemize}% \item [[Denis-Charles Cisinski]], \emph{[[joyalscatlab:Les préfaisceaux comme type d'homotopie|Les préfaisceaux comme modèles des types d'homotopie]]}, Ast\'e{}risque, Volume 308, Soc. Math. France (2006), 392 pages (\href{http://www.math.univ-toulouse.fr/~dcisinsk/ast.pdf}{pdf}) \end{itemize} The Berger-Moerdijk definition of generalized Reedy category appears in \begin{itemize}% \item [[Clemens Berger]] and [[Ieke Moerdijk]], \emph{On an extension of the notion of Reedy category} (2008) (\href{http://arxiv.org/abs/0809.3341}{arXiv:0809.3341}) \end{itemize} [[!redirects generalized Reedy categories]] [[!redirects Berger-Moerdijk generalized Reedy category]] [[!redirects Berger-Moerdijk generalized Reedy categories]] [[!redirects Cisinski generalized Reedy category]] [[!redirects Cisinski generalized Reedy categories]] \end{document}