\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{generalized Reedy model structure} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{model_category_theory}{}\paragraph*{{Model category theory}}\label{model_category_theory} [[!include model category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{the_model_structure}{The model structure}\dotfill \pageref*{the_model_structure} \linebreak \noindent\hyperlink{GlobalLatchingObjects}{Degreewise latching and matching objects}\dotfill \pageref*{GlobalLatchingObjects} \linebreak \noindent\hyperlink{SkeletaAndCoskeleta}{Skeleta and coskeleta}\dotfill \pageref*{SkeletaAndCoskeleta} \linebreak \noindent\hyperlink{proof_of_the_model_category_axioms}{Proof of the model category axioms}\dotfill \pageref*{proof_of_the_model_category_axioms} \linebreak \noindent\hyperlink{Lifting}{Lifting}\dotfill \pageref*{Lifting} \linebreak \noindent\hyperlink{Factorization}{Factorization}\dotfill \pageref*{Factorization} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{HomotopySkeletalFiltration}{Homotopy skeletal filtration and coskeleton tower}\dotfill \pageref*{HomotopySkeletalFiltration} \linebreak \noindent\hyperlink{relation_to_other_model_structures}{Relation to other model structures}\dotfill \pageref*{relation_to_other_model_structures} \linebreak \noindent\hyperlink{example}{Example}\dotfill \pageref*{example} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Generalized Reedy model structures are a class of [[model categories]] that generalize the [[Reedy model structures]] when the underlying [[site]] is generalized from a [[Reedy category]] to a [[generalized Reedy category]]. So these model structures serve to present [[(∞,1)-categories of (∞,1)-functors]] on generalized Reedy categories. As for the [[Reedy model structure|Reedy model structures]], the generalized Reedy model structure typically models [[geometric shapes for higher structures]]. The crucial generalization is that the basic shapes here may have non-trivial [[automorphisms]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $S$ be a (Berger-Moerdijk) [[generalized Reedy category]]. Let $\mathcal{C}$ be a category with small [[limits]] and [[colimits]]. \hypertarget{the_model_structure}{}\subsubsection*{{The model structure}}\label{the_model_structure} \begin{defn} \label{FirstNotation}\hypertarget{FirstNotation}{} For every [[object]] $s \in S$, every [[functor]] $X : S \to \mathcal{C}$ and every [[natural transformation]] $\phi : X \to Y$ \begin{itemize}% \item $S^+(s)$ for the [[full subcategory]] of the [[slice category]] $S^+/s$ on the non-invertible morphisms into $s$; \item $S^-(s)$ for the [[full subcategory]] of the [[under category]] $s/S^-$ on the non-invertible morphisms out of $s$; \item write \begin{displaymath} Latch_s(X) := {\lim_{\underset{(r \to s) \in S^+(s)}{\to}}} X(r) \end{displaymath} for the [[colimit]] of $X$ over $S^+(s)$, called the \textbf{latching object} of $X$ at $s$; \item write \begin{displaymath} Match_s(X) := {\lim_{\underset{(s \to r) \in S^-(s)}{\leftarrow}}} X(r) \end{displaymath} for the [[limit]] of $X$ over $S^-(s)$, called the \textbf{matching object} of $X$ at $s$. \item write \begin{displaymath} X_s \coprod_{Latch_s(X)} Latch_s(Y) \to Y_s \end{displaymath} for the universal morphism induced from the morphism $L_s(X) \to X_s$, called the \textbf{relative latching map} of $\phi$ at $s$; \item write \begin{displaymath} X_s \to Match_s(X) \prod_{Match_s(Y)} Y_s \end{displaymath} for the dual universal morphism, called the \textbf{relative matching map} of $\phi$ at $s$. \end{itemize} \end{defn} See \emph{[[Joyal-Tierney calculus]]} for more on these kinds of objects and morphisms. \begin{remark} \label{}\hypertarget{}{} In the above situation, the [[automorphism]] group $Aut_S(s)$ of $s$ canonically acts on all objects that appear, and all morphisms that appear respect this action. Equivalently this means that for all $s$ the above objects and morphisms take place in the presheaf category $[B Aut(s), \mathcal{C}]$. \end{remark} \begin{proof} Since limits and colimits in [[presheaf categories]] are computed objectwise. \end{proof} Choose now once and for all on all on $[\coprod_{s \in S} B Aut(s), \mathcal{C}]$ either the projective or the injective [[model structure on functors]] (if they exist). We will use the subscript ``${}_{proj/inj}$'', as in $[\coprod_{s \in S} B Aut(s), \mathcal{C}]_{proj/inj}$, to indicate some fixed choice. \begin{defn} \label{ReedyModelStructure}\hypertarget{ReedyModelStructure}{} Let $S$ be a (Berger-Moerdijk)-[[generalized Reedy category]]. And $\mathcal{C}$ be a [[model category]] such that the [[model structure on functors]] $[\coprod_{s \in S} B Aut(s), \mathcal{C}]_{proj/inj}$ exists (sufficient for the projective structure is that $\mathcal{C}$ is a [[cofibrantly generated model category]] and sufficient for the injective structure is that it is a [[combinatorial model category]]). Write $[S, \mathcal{C}]$ for the [[category of presheaves]] on $S^{op}$ with values in $\mathcal{C}$. Call a morphism $f : X \to Y$ in $[S, \mathcal{C}]$ \begin{itemize}% \item a \textbf{Reedy cofibration} if for each $s \in S$ the relative latching map \begin{displaymath} X_s \coprod_{L_s(X)} L_s(Y) \to Y_s \end{displaymath} is a cofibration in $[B Aut(s), \mathcal{C}]_{proj/inj}$; \item a \textbf{Reedy fibration} if for each $s \in S$ the relative matching map \begin{displaymath} X_s \to M_s(X) \prod_{M_s(Y)} Y_s \end{displaymath} is a fibration in $[S, \mathcal{C}]_{proj/inj}$; \item a \textbf{Reedy weak equivalence} if for each $s \in S$ the morphism \begin{displaymath} f_s : X_s \to Y_s \end{displaymath} is a weak equivalence in $\mathcal{C}$. \end{itemize} \end{defn} \hypertarget{GlobalLatchingObjects}{}\subsubsection*{{Degreewise latching and matching objects}}\label{GlobalLatchingObjects} We discuss here an alternative way of speaking about the latching and matching objects, one where all indices at a given \emph{degree} $n \in \mathbb{N}$ are collected. Recall from def. \ref{FirstNotation} that for $s \in S$ we write $S^+(s)$ for the category of non-invertible degree-increasing morphisms into $s$. We introduce the union of these categories over all objects of a fixed degree. \begin{defn} \label{SecondNotation}\hypertarget{SecondNotation}{} For $n \in \mathbb{N}$ write \begin{itemize}% \item $S^+(n) = \coprod_{s \in S \atop d(s) = n} S^+(s)$; \item $d_ n : S^+((n)) \to S$ for the restriction of the [[domain opfibration]] to objects that are non-invertible morphisms in $S^+$ with codomain in degree $n$ and to morphisms whose codomain is invertible, i.e. to diagrams of the form \begin{displaymath} \itexarray{ a &\stackrel{\in S^+}{\to}& b \\ \downarrow^{\mathrlap{\in S^+}} && \downarrow^{\mathrlap{\in S^+}} & not\, invertible \\ s & \stackrel{\simeq}{\to} & s' & deg = n } \,; \end{displaymath} \item $i_n : S^+(n) \hookrightarrow S^+((n))$ for the [[full subcategory]] inclusion on constant codomains; \item $G_n(S) \subset Core(S)$ for the [[groupoid]] of objects of degree $n$ and [[isomorphisms]] between them. \end{itemize} \end{defn} \begin{prop} \label{DiagramOfRestrictions}\hypertarget{DiagramOfRestrictions}{} The above categories and functors arrange into a [[diagram]] \begin{displaymath} \itexarray{ S &\stackrel{dom_n}{\leftarrow}& S^+((n)) &\stackrel{cod_n}{\to}& G_n(S) &\stackrel{j_n}{\hookrightarrow}& S \\ && {}^{\mathllap{i_n}}\uparrow && \uparrow^{\mathrlap{i_n}} \\ && S^+(n) &\stackrel{cod_n}{\to}& Obj(S)_n } \,, \end{displaymath} where the vertical morphisms are (non-full) inclusions and the square is a [[pullback]] (in the 1-category [[Cat]]) of an [[opfibration]]. Therefore it satisfies the [[Beck-Chevalley condition]] (see the discussion there) so that we have a [[natural isomorphism]] \begin{displaymath} (cod_n)_! i_n^* \simeq i_n^* (cod_n)_! \,, \end{displaymath} where $(cod_n)_!$ denotes left [[Kan extension]] along $cod_n$. \end{prop} \begin{remark} \label{RestrictedCodomainIsOpfibration}\hypertarget{RestrictedCodomainIsOpfibration}{} The restricted [[codomain fibration|codomain opfibration]] $cod_n : S^+((n)) \to G_n$ is indeed still an [[opfibration]]: it is the [[Grothendieck construction]] of the [[pseudofunctor]] \begin{displaymath} S^+(-) : G_n(S) \to Cat \end{displaymath} \begin{displaymath} s \mapsto S^+(s) \,. \end{displaymath} \end{remark} \begin{defn} \label{GlobalLatching}\hypertarget{GlobalLatching}{} For $n \in \mathbb{N}$, let $X \in [S, \mathcal{C}]$. Write \begin{itemize}% \item $X_n := j_n^* X = X|_{G_n(S)} \in [G_n(S), \mathcal{C}]$; \item the \textbf{$n$th latching object} is \begin{displaymath} Latch_n(X) := (cod_n)! dom_n^* X \in [G_n(S), \mathcal{C}] \,. \end{displaymath} \item the \textbf{$n$th latching morphism} \begin{displaymath} Latch_n(X) \to X_n \end{displaymath} is the [[adjunct]] to the canonical functor \begin{displaymath} dom_n^* X \to (j_n cod_n)^* X \,. \end{displaymath} \end{itemize} \end{defn} The following proposition says that the ``global'' latching objects indeed contain all the ordinary latching objects in the given degree. \begin{prop} \label{GlobalLatchingContainsLocalLatchings}\hypertarget{GlobalLatchingContainsLocalLatchings}{} For $s \in Obj(S)_n$ we have \begin{displaymath} Latch_n(X) : s \mapsto Latch_s(X) \end{displaymath} and the component of the $n$th latching morphism on $s$ is the canonical $Latch_s(X) \to X(s)$. \end{prop} \begin{proof} By remark \ref{RestrictedCodomainIsOpfibration} $(cod_n)_!$ is the left [[Kan extension]] along an [[opfibration]]. By a standard fact (see \href{http://ncatlab.org/nlab/show/Kan+extension#AlongFibrations}{here} at \emph{[[Kan extension]]}) these are computed at any object by the colimit over the fiber over that object. By definition, that fiber is \begin{displaymath} cod_n^{-1}(s) = \left\{ \itexarray{ a &&\stackrel{\in S^+}{\to}&& b \\ & \searrow^{\mathrlap{\in S^+}} && \swarrow_{\mathrlap{\in S^+}} && non\; invertible \\ && s } \right\} \,. \end{displaymath} This is indeed $S^+(s)$ (by the essential uniqueness of the $S^+\circ S^-$-factorization, this necessarily has the morphisms $a \to b$ in $S^+$, too.) So \begin{displaymath} \begin{aligned} ((cod_n)_! dom_n^* X)(s) & \simeq \lim_{\underset{S^+(s)}{\to}} (X \circ dom) \\ & \simeq =: Latch_s(X) \end{aligned} \,. \end{displaymath} \end{proof} An entirely dual discussion gives the degreewise matching objects: we have a diagram of categories \begin{displaymath} \itexarray{ S &\stackrel{cod_n}{\leftarrow}& S^-((n)) &\stackrel{dom_n}{\to}& G_n(S) &\stackrel{j_n}{\hookrightarrow}& S \\ && {}^{\mathllap{i_n}}\uparrow && \uparrow^{\mathrlap{i_n}} \\ && S^+(n) &\stackrel{dom_n}{\to}& Obj(S)_n } \,, \end{displaymath} and \begin{displaymath} Match_n X := (dom_n)_* cod_n^* X \,, \end{displaymath} where $(dom_n)_*$ is the right [[Kan extension]] along $dom_n$. \hypertarget{SkeletaAndCoskeleta}{}\subsubsection*{{Skeleta and coskeleta}}\label{SkeletaAndCoskeleta} Over any generalized Reedy category there is an anlog of the notion of [[simplicial skeleton]] and [[simplicial coskeleton]]. For $n \in \mathbb{N}$, write \begin{displaymath} t_n : S_{\leq n} \hookrightarrow S \end{displaymath} for the [[full subcategory]] on the objects of degree $\leq n$. \begin{defn} \label{SkeletaByAdjunction}\hypertarget{SkeletaByAdjunction}{} Left and right [[Kan extension]] along $t_n$ defines an [[adjoint triple]] \begin{displaymath} ((t_n)_! \dashv t_n^* \dashv (t_n)_*) : [S_{\leq n},\mathcal{C}] \stackrel{\overset{(t_n)_!}{\hookrightarrow}}{\stackrel{\overset{t_n^*}{\leftarrow}}{\underset{(t_n)_*}{\hookrightarrow}}} [S,\mathcal{C}] \,. \end{displaymath} The induced [[monads]] \begin{displaymath} (sk_n \dashv cosk_n) : [S,\mathcal{C}] \stackrel{\overset{(t_n)_!}{\leftarrow}}{\underset{t_n^*}{\to}} [S_{\leq n},\mathcal{C}] \stackrel{\overset{t_n^*}{\leftarrow}}{\underset{(t_n)_*}{\to}} [S,\mathcal{C}] \end{displaymath} are the \textbf{$n$-[[skeleton]]} and \textbf{$n$-[[coskeleton]]} functors, respectively. Define for all $X \in [S, \mathcal{C}]$ the notation $sk_{-1}X$ to denote the [[initial object]] and $cosk_{-1}X$ the [[terminal object]]. \end{defn} \begin{remark} \label{}\hypertarget{}{} Here $(t_n)_!$ and $(t_n)_*$ are indeed [[full and faithful functors]], as indicated. \end{remark} \begin{proof} Since $t_{n-1}$ is a [[full and faithful functor]], so is its left Kan extension (see \href{Kan+extension#LeftKanOnRepresentables}{here} at \emph{[[Kan extension]]}). Moreover in an [[adjoint triple]] the leftmost functor is full and faithful if and only if the rightmost one is. \end{proof} The $((t_n)_! \dashv t_n^*)$-[[unit of an adjunction|counit]] and the $(t_n^* \dashv (t_n)_*)$-unit induces [[natural transformations]] \begin{displaymath} sk_n \to id \end{displaymath} \begin{displaymath} id \to cosk_n \,. \end{displaymath} \begin{lemma} \label{LatchingIsSkeleton}\hypertarget{LatchingIsSkeleton}{} For all $n \in \mathbb{N}$, the $n$th latching object, def. \ref{GlobalLatching}, is isomorphic to the $(n-1)$-skeleton in degree $n$, and dually, the degree-$n$ matching object is isomorphic to the $(n-1)$-coskeleton in degree $n$. Under these identifications the canonical morphisms on both sides match \begin{displaymath} Latch_n(X) \simeq (sk_{n-1}(X))_n \end{displaymath} \begin{displaymath} Match_n(X) \simeq (cosk_{n-1}(X))_n \,. \end{displaymath} \end{lemma} This is (\hyperlink{BergerMoerdijk}{Ber-Moer, lemma 6.2}). \begin{proof} Observe that for any $s \in S$ of degree $n$, the canonical inclusion \begin{displaymath} i_s : S^+(s) \hookrightarrow t_{n-1}/ s \end{displaymath} into the [[comma category]] is a [[cofinal functor]]: \begin{itemize}% \item for $d \to s$ any object in $t_{n-1}/s$ it factors essentially uniquely as $d \stackrel{\in S^-}{\to} \stackrel{\in S^+}{\to} s$, and hence the [[comma category ]] $d/i_s$ is non-empty; \item similarly, since every morphism factors essentially uniquely in $S$, there is a zig-zag between any two objects in $d / i_s$ constructed from the isomorphisms that exhibit the essentially unique factorization. \end{itemize} With this the statement follows from the fact that restriction along cofinal functors preserves colimits and the pointwise description of left [[Kan extension]] by [[colimits]] over comma categories: \begin{displaymath} \begin{aligned} sk_{n-1}(X)_n(s) & := (j_n^* (t_{n-1})_! t_{n-1}^* X )(s) \\ & \simeq ((t_{n-1})_! t_{n-1}^* X )(s) \\ & \simeq \lim_{\underset{t_{n-1}/ s }{\to}} X \circ t_{n-1} \\ & \simeq \lim_{\underset{S^+(s)}{\to}} X \circ dom_n \\ & \simeq Latch_n X \end{aligned} \,. \end{displaymath} \end{proof} \begin{lemma} \label{coSkeletonTower}\hypertarget{coSkeletonTower}{} The tower of inclusions \begin{displaymath} S_{0} \hookrightarrow S_{\leq 1} \hookrightarrow \cdots \hookrightarrow S_{\leq n-1} \stackrel{q_{n-1}}{\hookrightarrow} S_{\leq n} \hookrightarrow \cdots \end{displaymath} induces towers of [[natural transformations]] \begin{displaymath} \emptyset \to sk_0 X \to sk_1 X \to sk_2 X \to \cdots \to X \,, \end{displaymath} and \begin{displaymath} X \to \cdots \to cosk_2 X \to cosk_1 X \to cosk_0 X \to * \,, \end{displaymath} that exhibit $X$ as the [[colimit]] of its skeleton tower and as the [[limit]] of its coskeleton tower. \end{lemma} This is (\hyperlink{BergerMoerdijk}{Ber-Moer, lemma 6.3}). \begin{proof} The morphisms in the tower come from the [[unit of an adjunction|adjunction units and counits]]: the morphism \begin{displaymath} sk_n X \to sk_{n+1} X \end{displaymath} is \begin{displaymath} (t_{n+1})_! (q_n)_! q_n^* t_{n+1}^*X \to (t_{n+1})_! t_{n+1}^* X \,. \end{displaymath} Therefore a [[cocone]] under this morphism \begin{displaymath} \itexarray{ sk_{n-1} X &&\to& sk_n X \\ & \searrow && \swarrow \\ && Y } \end{displaymath} is equivalently a diagram \begin{displaymath} \itexarray{ (q_{n})_! q_{n}^* t_{n+1} X &&\to& t_{n+1}^* X \\ & \searrow && \swarrow \\ && t_{n+1}^* Y } \,, \end{displaymath} which in turn is equivalently just a morphism $t_n^* X \to t_n^* Y$. So a cocone under the whole tower is an object $Y$ equipped for each $n$ with a morphism $t_n^* X \to t_n^* Y$. Clearly $X$ itself is the [[initial object|inital]] such object. \end{proof} \begin{lemma} \label{IdempotenceOfCoSkeleta}\hypertarget{IdempotenceOfCoSkeleta}{} For every $X \in [S, \mathcal{C}]$ and for all pairs $k,l \in \mathbb{N}$ with $k \leq l$, we have [[natural isomorphisms]] \begin{displaymath} sk_k sk_l \simeq sk_l sk_k \simeq sk_k \end{displaymath} and \begin{displaymath} cosk_k cosk_l \simeq cosk_l cosk_k \simeq cosk_k \,. \end{displaymath} \end{lemma} \begin{proof} With the above notation we have $t_k = t_l \circ q_k$. Therefore for instance \begin{displaymath} sk_k sk_l X \simeq (t_l)_! (q_k)_! q_k^* t_l^* (t_l)_! t_l^* X \,. \end{displaymath} Since the left adjoints here are [[full and faithful functors]] we have $t_l^* (t_l)_! \simeq id$ and hence \begin{displaymath} \cdots \simeq (t_l)_! (q_k)_! q_k^* t_l^* (t_l)_! t_l^* X \simeq sk_k X \,. \end{displaymath} Similarly for all the other cases. \end{proof} The following is a useful tool for inductively creating objects by adding higher degree components. \begin{lemma} \label{SkeletalExtension}\hypertarget{SkeletalExtension}{} Given \begin{itemize}% \item an object $X_{\leq (n-1)} \in [S_{\leq (n-1)}, \mathcal{C}]$; \item and an object $X_n \in [G_n(S), \mathcal{C}]$; \end{itemize} the choices of $X_{\leq n} \in [S_{\leq (n-1)}, \mathcal{C}]$ such that \begin{itemize}% \item $X_{\leq (n-1)} = t^*_{n-1} X_{\leq n}$ \item $X_n = j_n^* X$; \end{itemize} are in bijection with choices of morphisms \begin{displaymath} Latch_n(X_{\leq (n-1)}) \to X_n \to Match_n(X_{\leq (n-1)}) \end{displaymath} in $[G_n(S), \mathcal{C}]$. Accordingly, given morphisms $f_{\leq (n-1)} : X_{\leq (n-1)} \to Y_{\leq (n-1)}$ and $f_n : X_n \to Y_n$, then choice of extensions to a morphism $f_{\leq n} : X_{\leq n} \to Y_{\leq n}$ are in bijection with choices of vertical morphisms in commuting diagrams \begin{displaymath} \itexarray{ Latch_n(X_{\leq (n-1)}) &\stackrel{Latch_n(f_{\leq (n-1)})}{\to}& Latch_n(Y_{\leq (n-1)}) \\ \downarrow && \downarrow \\ X_n &\stackrel{f_n}{\to}& Y_n \\ \downarrow && \downarrow \\ Match_n(X_{\leq (n-1)}) &\stackrel{Match_n(f_{\leq (n-1)})}{\to}& Match_n(Y_{\leq (n-1)}) } \,. \end{displaymath} \end{lemma} \begin{proof} If the object exists, then the morphisms do, by the above definitions/discussion. Conversely, given these morphisms, we take $X_{\leq n} : S \to \mathcal{C}$ to be given by $X_{\leq (n-1)}$ on morphism of degree $\leq (n-1)$, to be given by $X_n$ on morphisms between objects of degree $n$, and need to define it on the degree-changing morphisms to and from objects of degree $n$. This information is provided precisely by the co-cone components of $Latch_n(X) \to X_n$ and by the cone-components of $X_n \to Match_n(X)$. \end{proof} \hypertarget{proof_of_the_model_category_axioms}{}\subsection*{{Proof of the model category axioms}}\label{proof_of_the_model_category_axioms} We discuss that for $S$ a Berger-Moerdijk-[[generalized Reedy category]] and $\mathcal{C}$ a [[cofibrantly generated model category]], def. \ref{ReedyModelStructure} indeed defines a [[model category]] structure on the [[functor category]] $[S,\mathcal{C}]$. \begin{theorem} \label{}\hypertarget{}{} Def. \ref{ReedyModelStructure} indeed defines a [[model category|model structure]]. \end{theorem} \begin{proof} It is clear that $[S,\mathcal{C}]$ has all limits and colimits (as for any [[category of presheaves]] they are computed objectwise in $\mathcal{E}$) and that the weak equivalences satisfy [[two-out-of-three]], since the weak equivalences in $\mathcal{E}$ do. Also, all three classes of morphisms are closed under [[retracts]], since, for instance, the relative latching morphism of a retract is the retract of a relative latching morphism and so the property follows with the retract-closure of the classes of morphisms in $\mathcal{E}$. It remains to show that the relevant lifting and factorization properties hold. This we discuss in a list of lemmas below in \emph{\hyperlink{Lifting}{Lifting}} and \emph{\hyperlink{Factorization}{Factorization}}. \end{proof} \hypertarget{Lifting}{}\subsubsection*{{Lifting}}\label{Lifting} We work with the ``global'' latching objects from \hyperlink{GlobalLatchingObjects}{above}. \begin{remark} \label{}\hypertarget{}{} A morphism $f : X \to Y$ in $[S, \mathcal{C}]_{gReedy}$ is a Reedy cofibration precisely if for all $n \in \mathbb{N}$ the global relative latching morphism, def. \ref{GlobalLatching} \begin{displaymath} X_n \coprod_{Latch_n(X)} Latch_n(Y) \to Y_n \end{displaymath} is a cofibration in $[G_n(S), \mathcal{C}]_{proj/inj}$. \end{remark} \begin{proof} The pushout in the presheaf category $[G_n(S), \mathcal{C}]$ is computed objectwise, so that the component of the $n$th relative latching morphism at $s \in S$ is the relative latching morphism at $s$, by prop. \ref{GlobalLatchingContainsLocalLatchings}. The [[groupoid]] $G_n(S)$ is equivalent to the disjoint union $\coprod_{[r] \in \pi_0 G_n(S)} B Aut_S(s)$ of the automorphism groupoids of one representative in each isomorphism class. A morphism in $[G_n(S), \mathcal{C}]_{proj/inj}$ is a cofibration precisely if its restriction to all of the $[B Aut_{\mathcal{C}}(s), \mathcal{C}]_{proj/inj}$ is. \end{proof} \begin{lemma} \label{LiftingLemma}\hypertarget{LiftingLemma}{} In the generalized Reedy structure, def. \ref{ReedyModelStructure}, the following holds. \begin{itemize}% \item Acyclic Reedy cofibrations $f$ such that for all $n \in \mathbb{N}$ the morphism $Latch_n(f)$ is an objectwise acyclic cofibration have the [[left lifting property]] against fibrations; \item Reedy cofibration have the left lifting property against acyclic Reedy fibrations $g$ with the special property that all $Latch_n(g)$ are objectwise acyclic fibrations. \end{itemize} \end{lemma} This is (\hyperlink{BergerMoerdijk}{Ber-Moer, lemma 5.2, lemma 5.4}). \begin{proof} We show the first clause. The second is dual. So let $f : X \to Y$ be an acyclic cofibration with the above extra property, and let $g : Y \to X$ be a fibration. We will exhibit a lift in any commuting diagram \begin{displaymath} \itexarray{ A &\stackrel{}{\to}& Y \\ \downarrow^{\mathrlap{}} && \downarrow^{\mathrlap{}} \\ B &\stackrel{}{\to}& X } \end{displaymath} by stepwise constructing lifts in the skeletal filtration, lemma \ref{coSkeletonTower}. At $n = 0$, observe that since $L_0(X) = \emptyset$ for all $X$, the fact that \begin{displaymath} A_0 \coprod_{L_0(A)} L_0(B) \to B_0 \end{displaymath} is a cofibration in $[G_0, \mathcal{C}]_{proj/inj}$ by assumption, means that in fact $f_0 : A_0 \to B_0$ is an acyclic cofibration here. Similarly $Y_0 \to X_0$ is a fibration there. But $G_0(S) = S_{\leq 0}$ and so the restriction of the lifting problem along $t_0$ \begin{displaymath} \itexarray{ A_0 &\stackrel{}{\to}& Y_0 \\ \downarrow^{\mathrlap{}} && \downarrow^{\mathrlap{}} \\ B_0 &\stackrel{}{\to}& X_0 } \end{displaymath} is a lifting problem in $[G_0(S), \mathcal{C}]_{proj/inj}$ of an acyclic cofibration against a fibration, and hence has a filler $\gamma_0 : B_0 \to Y_0$ there. Now assume that a filler $\gamma_{\leq (n-1)}$ in \begin{displaymath} \itexarray{ A_{\leq (n-1)} &\stackrel{}{\to}& Y_{\leq (n-1)} \\ \downarrow^{\mathrlap{}} && \downarrow^{\mathrlap{}} \\ B_{\leq (n-1)} &\stackrel{}{\to}& X_{\leq (n-1)} } \end{displaymath} has been found. By lemma \ref{LatchingIsSkeleton} this induces maps $Latch_n(B) \to Latch_n (Y)$ and $Match_n(B) \to Match_n(Y)$ from which we can build the commuting diagram \begin{equation} \itexarray{ A_n \coprod_{Latch_n A} Latch_n B &\to& Y_n \\ \downarrow^{\mathrlap{v_n}} && \downarrow^{\mathrlap{w_n}} \\ B_n &\to& X_n \times_{Match_n X} Match_n Y } \label{MainLiftingDiagram}\end{equation} in $[G_n(S), \mathcal{C}]$. Here for instance the top horizontal morphism comes from the commutativity of the square \begin{displaymath} \itexarray{ Latch_n A &\to& Latch_n B &\to& Latch_n Y \\ \downarrow && && \downarrow \\ A_n &\to& &\to& Y_n } \end{displaymath} by naturality of the $(sk_{n-1} \dashv t_{n-1}^*)$-counit. We observe now that finding a lift in \eqref{MainLiftingDiagram} will complete the induction step. To see this in more detail, notice that in the top left the lift \begin{displaymath} \itexarray{ A_n \coprod_{Latch_n A} Latch_n B &\to& Y_n \\ \downarrow &\nearrow_{\gamma_n}& \\ B_n } \end{displaymath} is \begin{itemize}% \item a lift in \begin{displaymath} \itexarray{ A_n &\to& Y_n \\ \downarrow & \nearrow_{\mathrlap{\gamma_n}} \\ B_n } \end{displaymath} \item such that it makes \begin{displaymath} \itexarray{ Latch_n(B) &\to& Latch_n(Y) \\ \downarrow && \downarrow \\ B_n &\stackrel{\gamma_n}{\to}& Y_n } \end{displaymath} commute; \end{itemize} and in the bottom right the lift \begin{displaymath} \itexarray{ && Y_n \\ & {}^{\mathllap{\gamma_n}}\nearrow & \downarrow \\ B_n &\to& X_n \prod_{Match_n X} Match_n Y } \end{displaymath} is \begin{itemize}% \item a lift in \begin{displaymath} \itexarray{ && Y_n \\ & {}^{\mathllap{\gamma_n}}\nearrow & \downarrow \\ B_n &\to& X_n } \end{displaymath} \item such that it makes \begin{displaymath} \itexarray{ B_n &\stackrel{\gamma_n}{\to}& Y_n \\ \downarrow && \downarrow \\ Match_n(B) &\to& Match_n(Y) } \end{displaymath} commute. \end{itemize} By lemma \ref{SkeletalExtension}, this is precisely the data that characterizes an extension of $\gamma_{\leq (n-1)}$ to $\gamma_{\leq n}$. By assumption, the left vertical morphism in \eqref{MainLiftingDiagram} is a cofibration in $[G_n, \mathcal{C}]_{proj/inj}$, and the right vertical morphism is a fibration there. Therefore to get the lift and hence complete the induction step, it is now sufficient to show that the left morphism is also a weak equivalence, hence is a weak equivalence in $\mathcal{C}$ over each $s \in S$. Also by assumption we have that $Latch_n(f)_s$ is an acyclic cofibration in $\mathcal{C}$ for all $s$. Hence so is its pushout $A_s \to (A_s \coprod_{Latch_n(A)_s} Latch_n(B)_s)$. The morphism $v_n(s)$ finally sits in the diagram \begin{displaymath} \itexarray{ Latch_n(A)_s &\to& A_s &\underoverset{\simeq}{f_s}{\to}& B_s \\ \downarrow^{\mathrlap{\simeq}} && \downarrow^{\mathrlap{\simeq}} & \nearrow_{\mathrlap{v_n(s)}} \\ Latch_n(B)_s &\to& (A_s \coprod_{Latch_n(A)_s} Latch_n(B)_s) } \end{displaymath} and so is a weak equivalence by [[two-out-of-three]]. \end{proof} \begin{lemma} \label{LatchingIntertwiner}\hypertarget{LatchingIntertwiner}{} Suppose $\phi : R \to S$ is a morphism of [[generalized Reedy categories]] such that the induced square (see prop. \ref{DiagramOfRestrictions}) \begin{displaymath} \itexarray{ R^+((k)) &\stackrel{cod_k^R}{\to}& G_k(R) \\ \downarrow^{\mathrlap{\phi_k^+}} && \downarrow^{\mathrlap{\phi_k}} \\ S^+((k)) &\stackrel{cod_k^S}{\to}& G_k(S) } \end{displaymath} is a pullback (in the 1-category [[Cat]]). Then for each $X \in [S, \mathcal{C}]$, there is a [[natural isomorphism]] \begin{displaymath} Latch_k(\phi^*(X)) \stackrel{\simeq}{\to} \phi_k^*(Latch_k X) \,, \end{displaymath} Given a Reedy category $S$, examples of $\phi$ satisfying this condition include \begin{enumerate}% \item $\phi := dom_n \circ i_n : S^+(n) \to S$; \item $\phi := : S_{\leq n} \hookrightarrow S$. \end{enumerate} \end{lemma} This is (\hyperlink{BergerMoerdijk}{Ber-Moer, lemma 4.4}). \begin{proof} The pullback square is part of the diagram \begin{displaymath} \itexarray{ R &\stackrel{dom_k^R}{\leftarrow}& R^+((k)) &\stackrel{cod_k^R}{\to}& G_k(R) \\ \downarrow^\phi && \downarrow^{\mathrlap{\phi_k^+}} && \downarrow^{\mathrlap{\phi_k}} \\ S &\stackrel{dom_k^S}{\leftarrow}& S^+((k)) &\stackrel{cod_k^S}{\to}& G_k(S) } \end{displaymath} whose rows define, by prop. \ref{DiagramOfRestrictions}, the latching objects by pull-push. Since the pullback square, being the pullback of an [[opfibration]] (the [[codomain opfibration]]), satisfies the [[Beck-Chevalley condition]] (by the fact discussed \href{http://ncatlab.org/nlab/show/Beck-Chevalley+condition#PullbacksOfOpfibrations}{here}), we find the intertwining isomorphism as follows: \begin{displaymath} \begin{aligned} Latch_k \phi^* X & \simeq (cod^R_k)_! (dom^R_k)^* \phi^* X \\ & \simeq (cod^R_k)_! (\phi^+_k)^* (dom^S_k)^* X \\ & \simeq (\phi_k)^* (cod^R_k)_! (dom^S_k)^* X \\ & \simeq (\phi_k)^* Latch_k X \end{aligned} \,. \end{displaymath} Now concerning the two examples. By definition we have \begin{displaymath} (S^+(n))^+((k)) \simeq \left\{ \itexarray{ t &\stackrel{\in S^+}{\to}& t' \\ \downarrow^{\mathrlap{\in S^+}} && \downarrow^{\mathrlap{\in S^+}} && non\; invertible \\ s &\stackrel{\simeq}{\to}& s' && deg = k \\ \downarrow^{\mathrlap{\in S^+}} && \downarrow^{\mathrlap{\in S^+}} && non \; invertible \\ r &\stackrel{id}{\to}& r && deg = n } \right\} \,, \end{displaymath} where on the right the vertical sequences in $S$ indicate objects in $(S^+(m))^+((k))$ and the whole diagram on the right indicates a morphism there. One sees that this is indeed the fiber product as claimed. \end{proof} We now show that the extra condition in prop. \ref{LiftingLemma} is in fact automatic. \begin{lemma} \label{ExtraPropertyOfAcyclicCofibrations}\hypertarget{ExtraPropertyOfAcyclicCofibrations}{} Let $f : X \to Y$ in $[S, \mathcal{C}]$ be a Reedy cofibration, which is a weak equivalence on all objects of degree $\lt n$. Then the morphism $Latch_n(f) : Latch_n(X) \to Latch_n(Y)$ is over each $s \in S$ an acyclic cofibration in $\mathcal{C}$ \end{lemma} This is (\hyperlink{BergerMoerdijk}{Ber-Moer, lemma 5.3}). \begin{proof} We show this by induction over $n$, using the skeletal filtration def. \ref{SkeletaByAdjunction}. For $n = 0$ we have for all $X$ that $Latch_n X = sk_{-1} X = \emptyset$, and hence the condition is trivially satisfied. So assume now that the statement has been shown for all $(k \lt n)$, then we need to show that $i_n^* Latch_n f$ is an acyclic cofibration in $[Obj(S)_n, \mathcal{C}]$, hence that every square of the form \begin{displaymath} \itexarray{ i_n^* Latch_n A &\to& Y \\ \downarrow^{\mathrlap{i_n^* Latch_n f}} && \downarrow^{g} \\ i_n^* Latch_n B &\to& X } \end{displaymath} with $g$ a fibration in $[Obj(S)_n, \mathcal{C}]_{proj/inh}$ (hence over every object of degree $n$) has a lift. Since by lemma \ref{DiagramOfRestrictions} we have \begin{displaymath} i^*_n Latch_n := i_n^* cod_! dom_n^* \simeq cod_! i_n^* dom_n^* \end{displaymath} such a filler is equivalently a filler in \begin{equation} \itexarray{ i_n^* dom_n^* A &\to& cod_n^* Y \\ {}^{\mathllap{i_n^* dom_n^*}}{}\downarrow && \downarrow \\ i_n^* dom_n^* B &\to& cod_n^* X } \label{SomeLiftingDiagram}\end{equation} being a diagram in $[S^+(n), \mathcal{C}]$. We now establish such a filler by using lemma \ref{LiftingLemma} with the Reedy category in question being now $S^+(n)$. This has only $+$-morphisms and hence Reedy fibrations here are objectwise fibrations, so the morphism on the right is a Reedy fibration over $S^+(n)$. Moreover, $i_n^* dom_n^* f$ is a Reedy weak equivalence in this structure, since all its objects have degree $\lt n$. It is now sufficient to show that the assumptions of lemma \ref{LiftingLemma} are satisfied over $S^+(n)$, to obtain the lift. By lemma \ref{LatchingIntertwiner} the functor \begin{displaymath} (dom_n i_n)^* : [G_k(S), \mathcal{C}] \to [G_k(S^+(n)), \mathcal{C}] \end{displaymath} intertwines the latching objects on both sides. Therefore we have an isomorphism between the relative latching morphism of interest \begin{displaymath} (dom_n i_n)^* A \coprod_{Latch_k (dom_n i_n)^* A} Latch_k (dom_n i_n)^* k \to (dom_n i_n)^* B \end{displaymath} and the morphism \begin{displaymath} (dom_n i_n)_k^*\left( A_k \coprod_{Latch_k(A)} Latch_k(B) \to B_k \right) \,. \end{displaymath} Since $(dom_n i_n)_k$ is a [[faithful functor]] between groupoids, $(dom_n i_n)_k^*$ preserves cofibrations in the projective structure (and trivially does so always in the injective structure), and so the above relative latching morphism is a cofibration, hence $(dom_n i_n)^*(f)$ is a Reedy cofibration. Similarly, since $Latch_k(f)$ is an acyclic cofibration by induction hypothesis, so is $Latch_k((dom_n i_n)_k^* f)$. This way the assumption of lemma \ref{LiftingLemma} are checked for \eqref{SomeLiftingDiagram} and so we do have a lift. \end{proof} \begin{lemma} \label{ExtraPropertyOfAcyclicFibrations}\hypertarget{ExtraPropertyOfAcyclicFibrations}{} Dually, let $f : X \to Y$ in $[S, \mathcal{C}]$ be a Reedy fibration which is a weak equivalence over all objects of degree $\lt n$. Then the morphism $Match_n(f) : Match_n(X) \to Match_n(Y)$ is over each $s \in S$ an acyclic fibration in $\mathcal{C}$. \end{lemma} This is (\hyperlink{BergerMoerdijk}{Ber-Moer, lemma 5.4}). \begin{proof} (Essentially the dual proof to that above. Except for one slight difference in the last part. Here -- and only here -- do we need the last clause in the definition of [[generalized Reedy category]], the one that says that isomorphisms see the maps in $S_-$ as epimorphisms.) \end{proof} We can finally conclude: \begin{prop} \label{}\hypertarget{}{} In the generalized Reedy model structure, def. \ref{ReedyModelStructure}, \begin{itemize}% \item acyclic cofibrations have the [[left lifting property]] against fibrations; \item cofibrations have the [[left lifting property]] against acyclic fibrations. \end{itemize} \end{prop} \begin{proof} By lemma \ref{ExtraPropertyOfAcyclicCofibrations} every acyclic Reedy cofibration induces a weak equivalence under $Latch_n$. By lemma \ref{LiftingLemma} this implies the left lifting property against Reedy fibrations. Dually for the second statement. \end{proof} \hypertarget{Factorization}{}\subsubsection*{{Factorization}}\label{Factorization} We demonstrate the factorization axiom in the Reedy model structure, def. \ref{ReedyModelStructure}. \begin{lemma} \label{AcyclicCoFibrationsByLatchingMatching}\hypertarget{AcyclicCoFibrationsByLatchingMatching}{} A morphism $f : X \to Y$ in $[S, \mathcal{C}]$ is both a cofibration and a weak equivalence according to def. \ref{ReedyModelStructure} precisely if the $n$th relative latching morphism (def. \ref{GlobalLatching}) \begin{displaymath} X_n \coprod_{Latch_n(X)} Latch_n(Y) \to Y_n \end{displaymath} is an acyclic cofibration in $[G_n(S), \mathcal{C}]_{proj/inj}$ for all $n \in \mathbb{N}$. Dually, a morphism $f : X \to Y$ in $[S, \mathcal{C}]$ is both a fibration and a weak equivalence according to def. \ref{ReedyModelStructure} precisely if the $n$th relative matching morphism (def. \ref{GlobalLatching}) \begin{displaymath} X_n \to Y_n \prod_{Match_n(X)} Match_n(Y) \end{displaymath} is an acyclic fibration in $[G_n(S), \mathcal{C}]_{proj/inj}$ for all $n \in \mathbb{N}$. \end{lemma} This is (\hyperlink{BergerMoerdijk}{Ber-Moer, prop. 5.6}). \begin{proof} By definition, the morphisms $f_n : X_n \to Y_n$ factor as \begin{displaymath} f_n : X_n \stackrel{u_n}{\to} X_n \coprod_{Latch_n(X)} Latch_n (Y) \stackrel{v_n}{\to} Y_n \,. \end{displaymath} If now $f$ is an acyclic Reedy cofibration, then by lemma \ref{ExtraPropertyOfAcyclicCofibrations} the morphism $Latch_n(X) \to Latch_n(Y)$ is over each object an acyclic cofibration in $\mathcal{C}$ and then so is $u_n$ above, being the pushout of this morphism. It follows by [[two-out-of-three]] that also $v_n$ is a weak equivalence for all $n$. Conversely, assume that all $v_n$ here are weak equivalences. We show by induction on $n$ that then also the $u_n$ are weak equivalences, and hence that $f$ is a Reedy weak equivalence. For $n = 0$ we have $u_0 = id$, and so this case is satisfied. So assume now that all $u_k$ for $k \lt n$ are weak equivalences. Then the assumptions of lemma \ref{ExtraPropertyOfAcyclicCofibrations} are again satisfied, and it follows that $Latch_n(f) : Latch_n(X) \to Latch_n(Y)$ is over each object an acyclic cofibration. Accordingly, so is $u_n$, being its pushout. Therefore, by induction, all $u_n$ are, in particular, weak equivalences. The argument for fibrations is dual to this. \end{proof} \begin{prop} \label{}\hypertarget{}{} Every morphism in $[S, \mathcal{C}]$ factors as an acyclic Reedy cofibration (according to def. \ref{ReedyModelStructure}) followed by a Reedy fibration, and it factors as a Reedy cofibration followed by an acyclic Reedy fibration \end{prop} This is (\hyperlink{BergerMoerdijk}{Ber-Moer, page 18}). \begin{proof} Let $f : X \to Y$ be any morphism in $[S, \mathcal{C}]$. We construct a factorization into an acyclic cofibration followed by a fibration by induction on the degree, i.e. by induction over the restrictions along $t_n^* : [S, \mathcal{C}] \to [S_{\leq n}, \mathcal{C}]$. The other case (cofibration followed by acyclic fibration) works dually. For $n = 0$ we have $S_{\leq 0} = G_0(S)$ and we factor $f_0$ in the model structure $[G_0(S), \mathcal{C}]_{proj/inj}$ \begin{displaymath} f_0 : X_0 \stackrel{\simeq}{\to} A_0 \to Y_0 \,. \end{displaymath} Now assume for some $n \in \mathbb{N}$ that a factorization of \begin{displaymath} f_{\leq (n-1)} : X_{\leq (n-1)} \stackrel{\simeq}{\to} A_{\leq (n-1)} \to Y_{\leq (n-1)} \end{displaymath} has been found. This induces the commutative diagram \begin{displaymath} \itexarray{ Latch_n(X) &\to & Latch_n(A) &\to& Latch_n(Y) \\ \downarrow && && \downarrow \\ X_n && && Y_n \\ \downarrow && && \downarrow \\ Match_n(X) &\to & Match_n(A) &\to& Match_n(Y) } \,. \end{displaymath} This diagram in turn induces a morphism \begin{displaymath} X_n \coprod_{Latch_n(X)} Latch_n(A) \to Y_n \prod_{Match_n(Y)} Match_n(A) \end{displaymath} in $[G_n(S), \mathcal{C}]$, which we may factor as a trivial cofibration followed by a fibration \begin{displaymath} X_n \coprod_{Latch_n(X)} Latch_n(A) \stackrel{\simeq}{\to} A_n \to Y_n \prod_{Match_n(Y)} Match_n(A) \end{displaymath} in $[G_n(S), \mathcal{C}]_{proj/inj}$. By lemma \ref{SkeletalExtension}, the ``righmost component'' of this data defines an extension of $A_{\leq (n-1)}$ to $A_{\leq n}$. The ``leftmost component'' defines a factorization of $f_n$ and the ``middle component'' says that this consistently extends the previously obtained factorization of $f_{\leq n}$. With this, finally the two morphisms say that this new factorization is by an acyclic Reedy cofibration (by lemma \ref{AcyclicCoFibrationsByLatchingMatching}) followed by a Reedy fibration (by definition). \end{proof} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{HomotopySkeletalFiltration}{}\subsubsection*{{Homotopy skeletal filtration and coskeleton tower}}\label{HomotopySkeletalFiltration} We discuss conditions on an object $X$ such that the skeletal/coskeletal towers discussed \hyperlink{SkeletaAndCoskeleta}{above} are ``homotopy good'' in that they exhibit $X$ not just as the colimit/limit over the tower, but as the [[homotopy colimit]]/[[homotopy limit]]. \begin{lemma} \label{QuillenPropertyOfCoSkeleta}\hypertarget{QuillenPropertyOfCoSkeleta}{} For all $n \in \mathbb{N}$ \begin{enumerate}% \item The left Kan extension \begin{displaymath} (t_n)_! : [S_{\leq n}, \mathcal{C}]_{gReedy} \to [S,\mathcal{C}]_{gReedy} \end{displaymath} is a [[left Quillen functor]]. \item The right Kan extension \begin{displaymath} (t_n)_* : [S_{\leq n}, \mathcal{C}]_{gReedy} \to [S,\mathcal{C}]_{gReedy} \end{displaymath} is a [[right Quillen functor]]. \item The restriction functor \begin{displaymath} (t_n)^* : [S, \mathcal{C}]_{gReedy} \to [S_{\leq n},\mathcal{C}]_{gReedy} \end{displaymath} is both a left and a right Quillen functor. \end{enumerate} \end{lemma} This is (\hyperlink{BergerMoerdijk}{Ber-Moer, lemma 6.4}). \begin{prop} \label{ReedyCoFibrantImpliesCoFibrantTowers}\hypertarget{ReedyCoFibrantImpliesCoFibrantTowers}{} \begin{enumerate}% \item If $X \in [S, \mathcal{C}]$ is Reedy cofibrant according to def. \ref{ReedyModelStructure}, then all $sk_n X$ are Reedy cofibrant and the canonical morphisms $sk_k X \to sk_l X$ are Reedy cofibrations. \item If $X \in \mathcal{C}$ is Reedy fibrant according to def. \ref{ReedyModelStructure} then all $cosk_n X$ are Reedy fibrant and the canonical morphisms $cosk_l X \to cosk_k X$ are Reedy fibrations. \end{enumerate} \end{prop} This is (\hyperlink{BergerMoerdijk}{Ber-Moer, prop. 6.5}). \begin{proof} We discuss the skeleta. The case of coskeleta is dual. By lemma \ref{IdempotenceOfCoSkeleta} it is sufficient to consider the case $sk_n X \to sk_\infty X = X$. To check that this is a Reedy cofibration if $X$ is Reedy cofibrant, consider the diagram that induces the relative latching object for this morphism \begin{displaymath} \itexarray{ Latch_k(sk_n X) &\to& Latch_k (X) \\ \downarrow && \downarrow \\ sk_n(X)_k &\to& X_k } \,. \end{displaymath} For $k \leq n$, the horizontal morphisms are both isomorphisms. Because by lemma \ref{LatchingIsSkeleton} the top morphism is \begin{displaymath} (sk_{k-1} sk_n(X))_k \to (sk_{k-1} X)_k \end{displaymath} and this is an iso by lemma \ref{IdempotenceOfCoSkeleta}. The bottom morphism is isomorphic to $(t_k^* sk_{n}(X))_k \to (t_k^* X)_k$ which is isomorphic to the identity by the kind of argument in lemma \ref{IdempotenceOfCoSkeleta}. Therefore also the relative latching morphism is an isomorphism in this case (use that pushouts of isos are isos and use 2-out-of-3 for isos), hence in particular a cofibration. Similarly, for $k \gt n$ the left vertical map is an isomorphism, so that the relative latching morphism in this case is $Latch_k(X) \to X_k$, which is a cofibration by the assumption that $X$ is Reedy cofibrant. Finally, that $sk_n X$ is cofibrant follows directly from lemma \ref{QuillenPropertyOfCoSkeleta}. \end{proof} \hypertarget{relation_to_other_model_structures}{}\subsubsection*{{Relation to other model structures}}\label{relation_to_other_model_structures} (\ldots{}) \hypertarget{example}{}\subsection*{{Example}}\label{example} \begin{itemize}% \item Every ordinary [[Reedy category]] is a generalized Reedy category, and in this case the above model structure reduces to the traditional [[Reedy model structure]]. \item The [[model structure for dendroidal complete Segal spaces]] is a [[Bousfield localization of model categories|left Bousfield localization]] of the generalized Reedy model structure over the [[tree category]]. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Joyal-Tierney calculus]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Clemens Berger]] and [[Ieke Moerdijk]], \emph{On an extension of the notion of Reedy category}, Math. Z. (2008) (\href{http://arxiv.org/abs/0809.3341}{arXiv:0809.3341}) \end{itemize} \end{document}