\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{generalized graph} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{extra_structure}{Extra Structure}\dotfill \pageref*{extra_structure} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \textbf{generalized graph} in the sense of \hyperlink{HRY}{HRY} is a generalization of the notion of a pseudograph given at [[graph]] (see in particular \href{https://ncatlab.org/nlab/show/graph#definition_in_terms_of_action_on_a_set_of_halfedges}{Definition in terms action on a set of half edges}). By adding structure like directions for the edges, we can define a [[wheeled graph]] which is a generalization of a [[directed pseudograph]]. What differentiates a generalized graph from a pseudograph and a wheeled graph from a [[directed pseudograph]] is the notion of an ``exceptional cell,'' which should be thought of as a set of half edges which have no vertices. A generalized graph can be visualized as a set of vertices with half edges attached to them, a rule for attaching half edges to glue the vertices together, and potentially some half edges (flags) that are attached to only one or zero vertices. For instance, a particularly simple generalized graph is one with no vertices and one edge. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} The following is Definition 2.2 of \hyperlink{HRY}{HRY}: \begin{defn} \label{}\hypertarget{}{} A generalized graph $G$ is a finite set $Flag(G)$ with: \begin{itemize}% \item a partition of $Flag(G)=\coprod_{\alpha\in A} F_\alpha$ into \textbf{cells} with $A$ finite, \item a distinguished partition subset $F_\epsilon$ called the \textbf{exceptional cell}, \item an involution $\iota$ satisfying $\iota F_\epsilon\subseteq F_\epsilon$, \item and a free involution $\pi$ on the set of $\iota$-fixed points of $F_\epsilon$. \end{itemize} \end{defn} Given a generalized graph $G$, Definition 2.3 of \hyperlink{HRY}{HRY} gives some useful terminology: \begin{defn} \label{}\hypertarget{}{} \begin{enumerate}% \item The elements of $Flag(G)$ are called \textbf{flags}. A flag in a non-exceptional (resp. exceptional) cell is called an \textbf{ordinary flag} (resp. \textbf{exceptional flag}). \item Call $G$ an \textbf{ordinary graph} if $F_\epsilon$ is empty. \item Each non-exceptional partition subset $F_\alpha\neq F_\epsilon$ is called a \textbf{vertex}. The set of vertices is denoted by $Vt(G)$. An empty vertex is an \textbf{isolated vertex}. A flag in a vertex is said to be \textbf{adjacent to} or \textbf{attached to} that vertex. \item An $\iota$-fixed point is a \textbf{leg} of $G$. The set of legs is denoted by $Leg(G)$. An \textbf{ordinary leg} (resp. \textbf{exceptional leg}) is an ordinary (resp. exceptional) flag that is also a leg. For an $\iota$-fixed point $x\in F_\epsilon$, the pair $\{x,\pi x\}$ is called an \textbf{exceptional edge}. \item A 2-cycle of $\iota$ consisting of ordinary flags is called an \textbf{ordinary edge}. A 2-cycle of $\iota$ contained in a vertex is a \textbf{loop}. A vertex that does not contain any loop is called \textbf{loop free}. A 2-cycle of $\iota$ contained in the exceptional cell is called an \textbf{exceptional loop}. \item An \textbf{internal edge} is any 2-cycle of $\iota$. An \textbf{edge} is an internal edge, an exceptional edge, or an ordinary leg. The set of edges of $G$ (resp. internal edges) is denoted $Edge(G)$ (resp. Edge\_i(G))\$. \item An ordinary edge $e=\{e_0,e_1\}$ is said to be \textbf{adjacent to} or \textbf{attached to} a vertex $v$ if either $e_0$, $e_1$ or both are adjacent to $v$. \end{enumerate} \end{defn} \hypertarget{extra_structure}{}\subsection*{{Extra Structure}}\label{extra_structure} There are a number of important structures that a generalized graph can possess which will be useful in using them to describe [[properads]]. The following is again from \hyperlink{HRY}{HRY}: \begin{defn} \label{}\hypertarget{}{} Suppose $G$ is a generalized graph. Fix a (possibly infinite) set of \emph{colors} $\mathcal{C}$. \begin{enumerate}% \item A \textbf{coloring} of $G$ is a function $Flag(G)\overset{\kappa}\to \mathcal{C}$ that is constant on orbits of $\iota$ and $\pi$. \item A \textbf{direction} for $G$ is a function $Flag(G)\overset{\delta}\to \{-1,1\}$ such that \begin{itemize}% \item if $\iota x\neq x$, then $\delta(\iota x)=-\delta(x)$, \item and if $x \in F_\epsilon$, then $\delta(\pi x)=-\delta (x)$. \end{itemize} \item For $G$ with direction, an \textbf{input} (resp. \textbf{output}) of a vertex $v$ is a flag $x\in v$ such that $\delta(x)=1$ (resp. $\delta(x)=-1$). An \textbf{input} (resp. \textbf{output}) of $G$ is a leg $x$ such that $\delta(x)=1$ (resp. $\delta(x)=-1$). For $u\in Vt(G)\cup \{G\}$, the set of inputs (resp. outputs) of $u$ is written $in(u)$ (resp. $out(u)$). \item A \textbf{listing} for $G$ with direction is a choice for each $u\in Vt(G)\cup \{G\}$ of a bijection of pairs of sets \begin{displaymath} (in(u),out(u))\overset{l_u}\to(\{1,\ldots,|in(u)|\},\{1,\ldots,|out(u)|\}). \end{displaymath} \end{enumerate} \end{defn} Thus, using these properties, we can model [[PROPs]] and [[properads]] with generalized graphs. See there and [[wheeled graph]] for more. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[graph]] \item [[quiver]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Philip Hackney]], [[Marcy Robertson]] and [[Donald Yau]]. \emph{Infinity Properads and Infinity Wheeled Properads}, Lecture Notes in Mathematics, 2147. Springer, Cham, 2015. \href{http://arxiv.org/pdf/1410.6716v2.pdf}{(arxiv version)} \item [[Joachim Kock]]. \emph{Graphs, hypergraphs, and properads}, \href{https://arxiv.org/pdf/1407.3744v3.pdf}{arXiv:1407.3744}. \end{itemize} \end{document}