\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{generalized homology} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{reduced_homology}{Reduced homology}\dotfill \pageref*{reduced_homology} \linebreak \noindent\hyperlink{unreduced_homology}{Unreduced homology}\dotfill \pageref*{unreduced_homology} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{expression_by_ordinary_homology_via_atiyahhirzebruch_spectral_sequence}{Expression by ordinary homology via Atiyah-Hirzebruch spectral sequence}\dotfill \pageref*{expression_by_ordinary_homology_via_atiyahhirzebruch_spectral_sequence} \linebreak \noindent\hyperlink{WhiteheadTheorem}{Whitehead theorem}\dotfill \pageref*{WhiteheadTheorem} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{generalized homology theory} is a certain [[functor]] from suitable [[topological spaces]] to [[graded abelian groups]] which satisfies most, but not all, of the abstract properties of [[ordinary homology]] functors (e.g. [[singular homology]]). By the [[Brown representability theorem]], under certain conditions every [[spectrum]] $K$ is the coefficient object of a [[generalized (Eilenberg-Steenrod) cohomology|generalized]] [[cohomology theory]] and [[Spanier-Whitehead duality|S-dually]] of a generalized homology theory. For $K = H R$ an [[Eilenberg-MacLane spectrum]] this reduces to [[homology|ordinary homology]]. See at \emph{[[generalized (Eilenberg-Steenrod) cohomology]]} for more. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{reduced_homology}{}\subsubsection*{{Reduced homology}}\label{reduced_homology} Throughout, write [[Top]]${}_{CW}$ for the category of [[topological spaces]] [[homeomorphism|homeomorphic]] to [[CW-complexes]]. Write $Top^{\ast/}_{CW}$ for the corresponding category of [[pointed topological spaces]]. Recall that [[colimits]] in $Top^{\ast/}$ are computed as colimits in $Top$ after adjoining the base point and its inclusion maps to the given diagram \begin{example} \label{WedgeSumAsCoproduct}\hypertarget{WedgeSumAsCoproduct}{} The [[coproduct]] in [[pointed topological spaces]] is the \emph{[[wedge sum]]}, denoted $\vee_{i \in I} X_i$. \end{example} Write \begin{displaymath} \Sigma \coloneqq S^1 \wedge (-) \;\colon\; Top^{\ast/}_{CW} \longrightarrow Top^{\ast/}_{CW} \end{displaymath} for the [[reduced suspension]] functor. Write $Ab^{\mathbb{Z}}$ for the category of [[integer]]-[[graded abelian groups]]. \begin{defn} \label{ReducedGeneralizedHomology}\hypertarget{ReducedGeneralizedHomology}{} A \textbf{reduced homology theory} is a [[functor]] \begin{displaymath} \tilde E_\bullet \;\colon\; (Top^{\ast/}_{CW}) \longrightarrow Ab^{\mathbb{Z}} \end{displaymath} from the category of [[pointed topological spaces]] ([[CW-complexes]]) to $\mathbb{Z}$-[[graded abelian groups]] (``[[homology groups]]''), in components \begin{displaymath} \tilde E _\bullet \;\colon\; (X \stackrel{f}{\longrightarrow} Y) \mapsto (\tilde E_\bullet(X) \stackrel{f_\ast}{\longrightarrow} \tilde E_\bullet(Y)) \,, \end{displaymath} and equipped with a [[natural isomorphism]] of degree +1, to be called the \textbf{[[suspension isomorphism]]}, of the form \begin{displaymath} \sigma \;\colon\; \tilde E_\bullet(-) \overset{\simeq}{\longrightarrow} \tilde E_{\bullet +1}(\Sigma -) \end{displaymath} such that: \begin{enumerate}% \item \textbf{([[homotopy invariance]])} If $f_1,f_2 \colon X \longrightarrow Y$ are two morphisms of pointed topological spaces such that there is a (base point preserving) [[homotopy]] $f_1 \simeq f_2$ between them, then the induced [[homomorphisms]] of abelian groups are [[equality|equal]] \begin{displaymath} f_1_\ast = f_2_\ast \,. \end{displaymath} \item \textbf{(exactness)} For $i \colon A \hookrightarrow X$ an inclusion of pointed topological spaces, with $j \colon X \longrightarrow Cone(i)$ the induced [[mapping cone]], then this gives an [[exact sequence]] of graded abelian groups \begin{displaymath} \tilde E_\bullet(A) \overset{i_\ast}{\longrightarrow} \tilde E_\bullet(X) \overset{j_\ast}{\longrightarrow} \tilde E_\bullet(Cone(i)) \,. \end{displaymath} \end{enumerate} We say $\tilde E_\bullet$ is \textbf{additive} if in addition \begin{itemize}% \item \textbf{([[wedge axiom]])} For $\{X_i\}_{i \in I}$ any set of pointed CW-complexes, then the canonical morphism \begin{displaymath} \oplus_{i \in I} \tilde E_\bullet(X_i) \longrightarrow \tilde E^\bullet(\vee_{i \in I} X_i) \end{displaymath} from the [[direct sum]] of the value on the summands to the value on the [[wedge sum]], example \ref{WedgeSumAsCoproduct}, is an [[isomorphism]]. \end{itemize} We say $\tilde E_\bullet$ is \textbf{ordinary} if its value on the [[0-sphere]] $S^0$ is concentrated in degree 0: \begin{itemize}% \item \textbf{(Dimension)} $\tilde E_{\bullet\neq 0}(\mathbb{S}^0) \simeq 0$. \end{itemize} A [[homomorphism]] of reduced cohomology theories \begin{displaymath} \eta \;\colon\; \tilde E_\bullet \longrightarrow \tilde F_\bullet \end{displaymath} is a [[natural transformation]] between the underlying functors which is compatible with the suspension isomorphisms in that all the following [[commuting square|squares commute]] \begin{displaymath} \itexarray{ \tilde E_\bullet(X) &\overset{\eta_X}{\longrightarrow}& \tilde F_\bullet(X) \\ {}^{\mathllap{\sigma_E}}\downarrow && \downarrow^{\mathrlap{\sigma_F}} \\ \tilde E_{\bullet + 1}(\Sigma X) &\overset{\eta_{\Sigma X}}{\longrightarrow}& \tilde F_{\bullet + 1}(\Sigma X) } \,. \end{displaymath} \end{defn} \hypertarget{unreduced_homology}{}\subsubsection*{{Unreduced homology}}\label{unreduced_homology} In the following a \emph{pair} $(X,A)$ refers to a [[subspace]] inclusion of [[topological spaces]] ([[CW-complexes]]) $A \hookrightarrow X$. Whenever only one space is mentioned, the subspace is assumed to be the [[empty set]] $(X, \emptyset)$. Write $Top_{CW}^{\hookrightarrow}$ for the category of such pairs (the [[full subcategory]] of the [[arrow category]] of $Top_{CW}$ on the inclusions). We identify $Top_{CW} \hookrightarrow Top_{CW}^{\hookrightarrow}$ by $X \mapsto (X,\emptyset)$. \begin{defn} \label{GeneralizedHomologyTheory}\hypertarget{GeneralizedHomologyTheory}{} A \textbf{homology theory} (unreduced, [[relative cohomology|relative]]) is a [[functor]] \begin{displaymath} E_\bullet : (Top_{CW}^{\hookrightarrow}) \longrightarrow Ab^{\mathbb{Z}} \end{displaymath} to the category of $\mathbb{Z}$-[[graded abelian groups]], as well as a [[natural transformation]] of degree +1, to be called the \textbf{[[connecting homomorphism]]}, of the form \begin{displaymath} \delta_{(X,A)} \;\colon\; E_{\bullet + 1}(X, A) \longrightarrow E^\bullet(A, \emptyset) \,. \end{displaymath} such that: \begin{enumerate}% \item \textbf{(homotopy invariance)} For $f \colon (X_1,A_1) \to (X_2,A_2)$ a [[homotopy equivalence]] of pairs, then \begin{displaymath} E_\bullet(f) \;\colon\; E_\bullet(X_1,A_1) \stackrel{\simeq}{\longrightarrow} E_\bullet(X_2,A_2) \end{displaymath} is an [[isomorphism]]; \item \textbf{(exactness)} For $A \hookrightarrow X$ the induced sequence \begin{displaymath} \cdots \to E_{n+1}(X, A) \stackrel{\delta}{\longrightarrow} E_n(A) \longrightarrow E_n(X) \longrightarrow E_n(X, A) \to \cdots \end{displaymath} is a [[long exact sequence]] of [[abelian groups]]. \item \textbf{([[excision]])} For $U \hookrightarrow A \hookrightarrow X$ such that $\overline{U} \subset Int(A)$, then the natural inclusion of the pair $i \colon (X-U, A-U) \hookrightarrow (X, A)$ induces an isomorphism \begin{displaymath} E_\bullet(i) \;\colon\; E_n(X-U, A-U) \overset{\simeq}{\longrightarrow} E_n(X, A) \end{displaymath} \end{enumerate} We say $E^\bullet$ is \textbf{additive} if it takes [[coproducts]] to [[direct sums]]: \begin{itemize}% \item \textbf{(additivity)} If $(X, A) = \coprod_i (X_i, A_i)$ is a [[coproduct]], then the canonical comparison morphism \begin{displaymath} \oplus_i E^n(X_i, A_i) \overset{\simeq}{\longrightarrow} E^n(X, A) \end{displaymath} is an [[isomorphism]]from the [[direct sum]] of the value on the summands, to the value on the total pair. \end{itemize} We say $E_\bullet$ is \textbf{ordinary} if its value on the point is concentrated in degree 0 \begin{itemize}% \item \textbf{(Dimension)}: $E_{\bullet \neq 0}(\ast,\emptyset) = 0$. \end{itemize} A [[homomorphism]] of unreduced homology theories \begin{displaymath} \eta \;\colon\; E_\bullet \longrightarrow F_\bullet \end{displaymath} is a [[natural transformation]] of the underlying functors that is compatible with the connecting homomorphisms, hence such that all these [[commuting square|squares commute]]: \begin{displaymath} \itexarray{ E_{\bullet +1}(X,A) &\overset{\eta_{(X,A)}}{\longrightarrow}& F_{\bullet +1}(X,A) \\ {}^{\mathllap{\delta_E}}\downarrow && \downarrow^{\mathrlap{\delta_F}} \\ E_\bullet(A,\emptyset) &\overset{\eta_{(A,\emptyset)}}{\longrightarrow}& F^\bullet(A,\emptyset) } \,. \end{displaymath} \end{defn} \begin{defn} \label{AlternativeFormulationOfExcisionAxiom}\hypertarget{AlternativeFormulationOfExcisionAxiom}{} The excision axiom in def. \ref{GeneralizedHomologyTheory} is equivalent to the following statement: For all $A,B \hookrightarrow X$ with $X = A \cup B$, then the inclusion \begin{displaymath} i \colon (A, A \cap B) \longrightarrow (X,B) \end{displaymath} induces an isomorphism, \begin{displaymath} i_\ast \;\colon\; E_\bullet(A, A \cap B) \overset{\simeq}{\longrightarrow} E_\bullet(X, B) \,. \end{displaymath} \end{defn} (e.g \hyperlink{Switzer75}{Switzer 75, 7.2, 7.5}) \begin{proof} First consider the statement under the condition that $X = Int(A) \cup Int(B)$. In one direction, suppose that $E^\bullet$ satisfies the original excision axiom. Given $A,B$ with $X = \Int(A) \cup Int(B)$, set $U \coloneqq X-A$ and observe that \begin{displaymath} \begin{aligned} \overline{U} & = \overline{X-A} \\ & = X- Int(A) \\ & \subset Int(B) \end{aligned} \end{displaymath} and that \begin{displaymath} (X-U, B-U) = (A, A \cap B) \,. \end{displaymath} Hence the excision axiom implies $E^\bullet(X, B) \overset{\simeq}{\longrightarrow} E^\bullet(A, A \cap B)$. Conversely, suppose $E^\bullet$ satisfies the alternative condition. Given $U \hookrightarrow A \hookrightarrow X$ with $\overline{U} \subset Int(A)$, observe that we have a cover \begin{displaymath} \begin{aligned} Int(X-U) \cup Int(A) & = (X - \overline{U}) \cap \Int(A) \\ & \supset (X - Int(A)) \cap Int(A) \\ & = X \end{aligned} \end{displaymath} and that \begin{displaymath} (X-U, (X-U) \cap A) = (X-U, A - U) \,. \end{displaymath} Hence \begin{displaymath} E^\bullet(X-U,A-U) \simeq E^\bullet(X-U, (X-U)\cap A) \simeq E^\bullet(X,A) \,. \end{displaymath} This shows the statement for the special case that $X = Int(A)\cup Int(U)$. The general statement reduces to this by finding a suitable homotopy equivalence to a slightly larger covering pair (e.g \hyperlink{Switzer75}{Switzer 75, 7.5}). \end{proof} \begin{prop} \label{ExactSequenceOfATriple}\hypertarget{ExactSequenceOfATriple}{} \textbf{(exact sequence of a triple)} For $E_\bullet$ an unreduced generalized cohomology theory, def. \ref{GeneralizedHomologyTheory}, then every inclusion of two consecutive subspaces \begin{displaymath} Z \hookrightarrow Y \hookrightarrow X \end{displaymath} induces a [[long exact sequence]] of homology groups of the form \begin{displaymath} \cdots \to E_q(Y,Z) \stackrel{}{\longrightarrow} E_q(X,Z) \stackrel{}{\longrightarrow} E_q(X,Y) \stackrel{\bar \delta}{\longrightarrow} E_{q-1}(Y,Z) \to \cdots \end{displaymath} where \begin{displaymath} \bar \delta \;\colon \; E_{q}(X,Y) \stackrel{\delta}{\longrightarrow} E_{q-1}(Y) \longrightarrow E_{q-1}(Y,Z) \,. \end{displaymath} \end{prop} \begin{proof} Apply the [[braid lemma]] to the interlocking long exact sequences of the three pairs $(X,Y)$, $(X,Z)$, $(Y,Z)$: (graphics from \href{http://math.stackexchange.com/a/1180681/58526}{this Maths.SE comment}) See \href{braid+lemma#ExactSequenceForTripleInGeneralizedHomology}{here} for details. \end{proof} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{expression_by_ordinary_homology_via_atiyahhirzebruch_spectral_sequence}{}\subsubsection*{{Expression by ordinary homology via Atiyah-Hirzebruch spectral sequence}}\label{expression_by_ordinary_homology_via_atiyahhirzebruch_spectral_sequence} The [[Atiyah-Hirzebruch spectral sequence]] serves to express generalized homology $E_\bullet$ in terms of ordinary homology with coefficients in $E_\bullet(\ast)$. \hypertarget{WhiteheadTheorem}{}\subsubsection*{{Whitehead theorem}}\label{WhiteheadTheorem} \begin{prop} \label{}\hypertarget{}{} Let $\phi \colon E \longrightarrow F$ be a morphism of reduced generalized (co-)homology functors, def. \ref{ReducedGeneralizedHomology} (a [[natural transformation]]) such that its component \begin{displaymath} \phi(S^0) \colon E(S^0) \longrightarrow F(S^0) \end{displaymath} on the [[0-sphere]] is an [[isomorphism]]. Then $\phi(X)\colon E(X)\to F(X)$ is an [[isomorphism]] for $X$ any [[CW-complex]] with a [[finite number]] of cells. If both $E$ and $F$ satisfy the [[wedge axiom]], then $\phi(X)$ is an isomorphism for $X$ any [[CW-complex]], not necessarily finite. \end{prop} For $E$ and $F$ [[ordinary cohomology]]/[[ordinary homology]] functors a proof of this is in (\hyperlink{EilenbergSteenrod52}{Eilenberg-Steenrod 52, section III.10}). From this the general statement follows (e.g. \hyperlink{Kochman96}{Kochman 96, theorem 3.4.3, corollary 4.2.8}) via the [[natural transformation|naturality]] of the [[Atiyah-Hirzebruch spectral sequence]] (the classical result gives that $\phi$ induces an isomorphism between the second pages of the AHSSs for $E$ and $F$). A complete proof of the general result is also given as (\hyperlink{Switzer75}{Switzer 75, theorem 7.55, theorem 7.67}) \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item [[stable homotopy homology theory]] is the homology theory represented by the [[sphere spectrum]] \item [[ordinary homology]] is the homology theory represented by an [[Eilenberg-MacLane spectrum]] \item [[bordism homology theory]] is the homology theory represented by a [[Thom spectrum]]; \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[generalized cohomology]] \item [[Kronecker pairing]] \item [[Atiyah-Hirzebruch spectral sequence]] \item [[Steenrod algebra]] \item [[phantom map]] \item [[bivariant cohomology]] \item [[Bousfield equivalence]] \item [[Hurewicz homomorphism]], [[Boardman homomorphism]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} (For more see the references at \emph{[[generalized (Eilenberg-Steenrod) cohomology]]}.) Original articles include \begin{itemize}% \item [[George Whitehead]], \emph{Generalized homology theories} (1961) (\href{http://www.maths.ed.ac.uk/~aar/papers/gww9.pdf}{pdf}) \end{itemize} Textbook accounts include \begin{itemize}% \item [[Stanley Kochmann]], section 3.4 of \emph{[[Bordism, Stable Homotopy and Adams Spectral Sequences]]}, AMS 1996 \item [[Robert Switzer]], chapter 7 (and 8-12) of \emph{Algebraic Topology - Homotopy and Homology}, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, Vol. 212, Springer-Verlag, New York, N. Y., 1975. \item [[Stefan Schwede]], chapter II, section 6 of \emph{[[Symmetric spectra]]}, 2012 (\href{http://www.math.uni-bonn.de/~schwede/SymSpec-v3.pdf}{pdf}) \end{itemize} See also \begin{itemize}% \item [[Friedrich Bauer]], \emph{Classifying spectra for generalized homology theories} Annali di Maternatica pura ed applicata (IV), Vol. CLXIV (1993), pp. 365-399 \item [[Friedrich Bauer]], \emph{Remarks on universal coefficient theorems for generalized homology theories} Quaestiones Mathematicae Volume 9, Issue 1 \& 4, 1986, Pages 29 - 54 \end{itemize} A general construction of homologies by ``geometric cycles'' similar to the [[Baum-Douglas geometric cycles]] for [[K-homology]] is discussed in \begin{itemize}% \item S. Buoncristiano, C. P. Rourke and B. J. Sanderson, \emph{A geometric approach to homology theory}, Cambridge Univ. Press, Cambridge, Mass. (1976) \end{itemize} Further generalization of this to [[bivariant cohomology theories]] is in \begin{itemize}% \item Martin Jakob, \emph{Bivariant theories for smooth manifolds}, Applied Categorical Structures 10 no. 3 (2002) \end{itemize} [[!redirects generalized homology theory]] [[!redirects generalized homology theories]] [[!redirects homology theory]] [[!redirects homology theories]] [[!redirects generalized homologies]] [[!redirects generalised homology]] [[!redirects generalised homologies]] \end{document}