\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{generalized lambda-structure} [[!redirects Generalized Lambda-structure]] \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebra}{}\paragraph*{{Algebra}}\label{algebra} [[!include higher algebra - contents]] \noindent\hyperlink{overview}{Overview}\dotfill \pageref*{overview} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{geometric_interpretation_to_be_checked_very_carefully_may_be_problematic}{Geometric interpretation (to be checked very carefully: may be problematic)}\dotfill \pageref*{geometric_interpretation_to_be_checked_very_carefully_may_be_problematic} \linebreak \noindent\hyperlink{related_notion}{Related notion}\dotfill \pageref*{related_notion} \linebreak \hypertarget{overview}{}\subsection*{{Overview}}\label{overview} The usual notion of [[Lambda-ring]] is directly related to the Banach ring $(\mathbb{Z},|\cdot|_0)$ of integers equipped with their trivial norm in the following way: a [[Lambda-ring]] is a usual ring equipped with an action of the monoid $\mathbb{N}=\mathbb{Z}$-$\{0\}/\{\pm 1\}$. Remark that some important Lambda-rings, such as K-theory, are actually equipped with an additional $\mathbb{Z}/2$-grading, that may be combined with the Lambda-structure to get an action of the full monoid $\mathbb{Z}$-$\{0\}$. It is important to remark here that the $\Lambda$-structure on $K$-theory allows one to get back (as the spectrum of the Lambda-operations) the full $\mathbb{Z}$-grading on Betti cohomology. From the perspective of [[global analytic geometry]], one thinks of Lambda-structures as related to the Banach ring of integers with their trivial norm, so that one may seek for various generalizations, that will be called ``generalized Lambda-structure'', associated to more general Banach or ind-Banach rings. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $(R,|\cdot|)$ be an integral Banach ring equipped with a multiplicative norm. We will denote $\Lambda(R,|\cdot|)$ the monoid given by \begin{displaymath} \Lambda(R,|\cdot|):=\mathrm{Frac}(R)\cap \{a\in R,\;|a|\leq 1\}. \end{displaymath} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} There is not yet a precise notion of generalized Lambda-structure, but one may easily give various of its concrete incarnations. \begin{enumerate}% \item The classical notion of ($\mathbb{Z}/2$-graded) Lambda-ring may be seen as a $\Lambda(\mathbb{Z},|\cdot|_0)=\mathbb{Z}$-$\{0\}$-structure. The (geometric/Weil) cohomology theories of arithmetic geometry (i.e. for schemes over $\mathbb{Z}$) are often equipped with an $\mathbb{N}$-grading, that one may interpret as a classical Lambda-ring structure. \item The [[absolute cohomology]] theories in arithmetic geometry such as Beilinson-[[Deligne cohomology]] or [[motivic cohomology]] are equipped with a natural bi-graduation, related to the fact that they are defined by the (homotopical: think of a Leray spectral sequence) combination of geometric methods (Lambda-structures/Frobenii) and of differential methods (Hodge filtration of de Rham cohomology or $\mathbb{G}_m$-stabilization in motivic homotopy theory, that corresponds to the ``[[Tate twist]]'' grading). The corresponding Banach ring may be simply given by the Banach ring \begin{displaymath} (R,|\cdot|):=(\mathbb{Z}[T],|\cdot|_0) \end{displaymath} of polynomials equipped with their trivial norm (analytic functions on the non-archimedean global analytic unit disc). The bigrading is given by the action of the monoid \begin{displaymath} \Lambda(R,|\cdot|):= \mathbb{Q}(T)^\times\cap \mathbb{Z}[T]=\mathbb{Z}[T]-\{0\}. \end{displaymath} The ([[Tate twist]]) motivic and cohomological gradings are given respectively by the actions of the monoid $\mathbb{Z}-\{0\}$ and the monoid of powers of $T$. \item The (yet to be properly defined) cohomology theories in [[global analytic geometry]] have a different type of bigrading (that is related to the idea of the algebra of polynomials over the [[field with one element]], formulated precisely, e.g., in Durov's setting of [[generalized rings]], i.e., commutative algebraic monads). We will now extend the above definition of the monoid $\Lambda$ to the setting of ind-Banach ring, since this operation seems necessary to understand absolute cohomologies. The corresponding (ind-)Banach ring may be simply given by the ind-Banach ring \begin{displaymath} R:=\mathbb{Z}\{T\}^\dagger \end{displaymath} of overconvergent power series on the unit disc with coefficients in the Banach ring $(\mathbb{Z},|\cdot|_\infty)$: the {\colorbox[rgb]{1.00,0.93,1.00}{\tt geometric}} classical Lambda-structure is given by the base Banach ring, and the differential/absolute graduation is given by the $T$-part of the monoid (we may need to make a completion here) \begin{displaymath} \Lambda(R):= \mathrm{Frac}(\mathbb{R}\{T\}^\dagger)^\times\cap \{P\in \mathbb{Z}\{T\}^\dagger,|P|_{\infty,1}\leq 1\}=\mathbb{F}_{\{\pm 1\}}[T]-\{0\}. \end{displaymath} This is the monoid of polynomials whose terms are all equal to zero except exactly one, that is equal to $\{\pm 1\}$. It contains and extends the monoid $\Lambda(\mathbb{Z},|\cdot|_\infty)=\{\pm 1\}=(\mathbb{F}_{\{\pm 1\}})^\times$ in degree zero. This will be the natural grading monoid (generalized Lambda-structure) for absolute motives, i.e., motivic cohomology theories over $(\mathbb{Z},|\cdot|_\infty)$. Remark that the recent work of [[Peter Scholze]] on local Schtukas in mixed characteristic also uses in an essential way objects such as the unit disc over the given base Banach ring. \item The notion of $\Lambda(\mathbb{Z},|\cdot|_\infty)=\{\pm 1\}$-structure is simply given by the notion of $\mathbb{Z}/2$-grading. Many cohomological invariants, such as [[K-theory]], negative [[cyclic homology]] and the [[Chern character]] are equipped with a natural $\mathbb{Z}/2$-grading. It is quite probable that one can't hope to get something more that a $\mathbb{Z}/2$-grading on a ``really natural'' cohomology theory in [[global analytic geometry]]. \item In the theory of $(\Phi,\Gamma)$-modules, the monoid $\Lambda(\mathbb{Z}_p,|\cdot|_p)=\mathbb{Z}_p$-$\{0\}$ plays a central role. It looks like a not so hard but important task to clarify the relation of this theory with the classical notion of Lambda-ring. \item It is an interesting question to try to understand the relation of classical Hodge theory (over $\mathbb{R}$ or $\mathbb{C}$) with the notion of Lambda-structure on the corresponding Banach ring. This may show interesting limits to the idea of generalizing Lambda-structures to other Banach rings. The case of $\mathbb{R}$ may (or may not) be treated using $\mathbb{Z}/2$-equivariant methods. An important point, in this perspective, is that the naive archimedean generalization of the notion of $(\Phi,\Gamma)$-module does not work, because $S^1$ does not act directly on the open complex unit disc $D^\circ(1,1)$. One only has an infinitesimal action (connection $\nabla$), whose combination with the infinitesimal generator $\Phi$ of $\mathbb{R}_+^*$ may be seen as an archimedean analog of the $p$-adic differential equations used in Berger's thesis to prove the monodromy theorem of $p$-adic Hodge theory. An important drawback of this infinitesimal approach (in the $p$-adic setting) is that the functor from $p$-adic Hodge structures (i.e., $(\Phi,\Gamma)$-modules) to $p$-adic Frobenius-equivariant differential equations is {\colorbox[rgb]{1.00,0.93,1.00}{\tt not\char32fully\char32faithful}}: making the action of $U(1)=\mathbb{Z}_p^*$ infinitesimal kills an important part of the information (essentially, the Hodge filtration on de Rham cohomology). A possible solution to this problem may be to work with a multiplicative theory over $[\mathbb{A}^1/\mathbb{G}_m]$ instead of an additive one over $[D^\circ(1,1)/\Lambda]$ or $[D^\circ(1,1)/(\Phi,\nabla)]$, or to use a combination of the additive and multiplicative theory. \item The monoid that should come in play into the theory of [[spectral interpretation]] for zeroes and poles of global arithmetic and automorphic [[L-functions]] may be given by the monoid $\Lambda(\mathbb{A})$, where $\mathbb{A}$ is the ind-Banach ring of ad\`e{}les. \end{enumerate} \hypertarget{geometric_interpretation_to_be_checked_very_carefully_may_be_problematic}{}\subsection*{{Geometric interpretation (to be checked very carefully: may be problematic)}}\label{geometric_interpretation_to_be_checked_very_carefully_may_be_problematic} One may take inspiration from the theory of $(\Phi,\Gamma)$-modules ($p$-adic Hodge structures) to define a natural notion of $\Lambda$-module in [[global analytic geometry]]. This gives a version of the notion of a ``Hodge structure'' that works over an integral base, which makes it quite well adapted to the global analytic situation. Let $R$ be a Banach ring, and $\overset{\circ}{D}(1,1)$ be the open unit disc on $R$. We denote (be careful, this differs from the previously used notation, because it is a different kind of object) \begin{displaymath} \Lambda\subset \overset{\circ}{D}(1,1)\times \overset{\circ}{D}(1,1) \end{displaymath} the (non-strict) analytic subgroupoid of the groupoid of pairs acting on $\overset{\circ}{D}(1,1)$ given by pairs of the form $(1+x,(1+x)^a)$ where $a\in D(0,1)\cap \GL_1\subset \mathbb{A}^1$, and \begin{displaymath} (1+x)^a:=\sum_{k\geq 0}\binom{a}{k}x^k. \end{displaymath} If $R=(\mathbb{Q}_p,|\cdot|_p)$, then we have actually that $\mathbb{Z}_p-\{0\}\subset D(0,1)(\mathbb{Q}_p)$. A $\Lambda$-module over $R$ is a module over the analytic stack $B\Lambda$ that one may denote as a quotient stack $[\overset{\circ}{D}(1,1)/\Lambda]$. We then have, if $R$ contains the rational numbers, a natural logarithm map \begin{displaymath} log:[\overset{\circ}{D}(1,1)/\Lambda]\to [\mathbb{A}^1/\GL_1] \end{displaymath} that allows us to give a relation between the classical Hodge filtration of a (say) proper or logarithmically proper analytic space over $R$ to its $R$-Hodge structure, that should be a module over $[\overset{\circ}{D}(1,1)/\Lambda]$. If we suppose given a (say) strict analytic space over $R$, and one wants to define the associated $R$-Hodge structure, one may simply try to adapt Simpson's construction of the deformation to the normal bundle, to get what one wants. Actually, one needs a loop space analog of this construction, that is due to Vezzosi for a derived scheme. Recall that in this derived scheme case, we have \begin{displaymath} LX=\Hom_{dSt}(B\mathbb{Z},X)\cong \Hom_{dSt}(B\mathbb{G}_a,X). \end{displaymath} We may use the action by multiplication of $\mathbb{A}^1$ on $B\mathbb{G}_a$ to define a family of actions of $B\mathbb{G}_a$ on $LX$, parametrized by $\mathbb{A}^1$. This gives a $\mathbb{G}_m$-equivariant family \begin{displaymath} Hod(LX)\to \mathbb{A}^1 \end{displaymath} whose fiber at $0$ is $LX$ with the trivial action of $B\mathbb{G}_a$ and whose fiber at $1$ is $LX$ equipped with the usual action of $B\mathbb{G}_a$. If we want to define a construction that is related to the loop space Hodge filtration through the logarithm map \begin{displaymath} log:[\overset{\circ}{D}(1,1)/\Lambda]\to [\mathbb{A}^1/\mathbb{G}_m], \end{displaymath} we need to replace $B\mathbb{G}_a$ by $BD^\circ:=B\overset{\circ}{D}(1,1)$, and the multiplicative action of $\mathbb{A}^1$ on $B\mathbb{G}_a$ by the (partial) action of $D(0,1)$ on $BD^\circ$ through the power map \begin{displaymath} (1+x,a)\mapsto (1+x)^a. \end{displaymath} We thus replace the derived loop space by the space \begin{displaymath} L^D X:=Hom_{dSt}(B\overset{\circ}{D}(1,1),X), \end{displaymath} together with its (partial) action of $B\overset{\circ}{D}(1,1)$ given by the (partial) multiplication of $\overset{\circ}{D}(1,1)\subset \mathbb{G}_m$. There is actually a family of such actions parametrized by $D(0,1)$ through the (partial) map \begin{displaymath} D(0,1)\times B\overset{\circ}{D}(1,1)\times L^D X\to L^D X \end{displaymath} given by $(a,d,\gamma)\mapsto \gamma\circ m_{d^a}$. This family of actions gives a space \begin{displaymath} Hod(L^D X)\to D(0,1) \end{displaymath} whose fiber at $0$ is the trivial action of $B\overset{\circ}{D}(1,1)$ on $L^D X$ and whose fiber at $1$ is the standard action. \hypertarget{related_notion}{}\subsection*{{Related notion}}\label{related_notion} [[generalized higher loop spaces]] \end{document}