\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{generalized smooth space} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_geometry}{}\paragraph*{{Higher geometry}}\label{higher_geometry} [[!include higher geometry - contents]] \hypertarget{generalised_smooth_spaces}{}\section*{{Generalised smooth spaces}}\label{generalised_smooth_spaces} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{literature}{Literature}\dotfill \pageref*{literature} \linebreak \noindent\hyperlink{remarks}{Remarks}\dotfill \pageref*{remarks} \linebreak \noindent\hyperlink{further_discussion}{Further discussion}\dotfill \pageref*{further_discussion} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Generalised smooth spaces are, roughly speaking, generalisations of [[smooth manifolds]]. Their \emph{raison d'etre} is the following \begin{quote}% Manifolds are fantastic spaces. It's a pity that there aren't more of them. \end{quote} Many spaces that occur in mathematics aren't manifolds but one would like to be able to treat them as if they were manifolds; in particular, they should have some \emph{smooth} structure that goes beyond mere topology. By considering examples of these spaces and by considering what specifically one would like to do with or to them, it is possible to generalise the idea of a smooth manifold to encompass the new examples whilst preserving enough structure to retain the old tools. There have been several such generalisations in recent mathematical history. A (partial) list is below. Often the examples of spaces that one would like to consider as manifolds are formed by applying a categorical construction to ordinary manifolds; such as limits, quotients, or function spaces. This leads one to ask for the categorical properties of each of the resulting categories of generalised smooth spaces. Another obvious question to ask is what tools and techniques can be extrapolated from smooth manifolds to generalised smooth spaces. In addition, whilst some techniques have obvious generalisations there may be some hidden twists that are not apparent on just smooth manifolds. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} According to the general nonsense of [[space and quantity]], generalized smooth spaces may be determined by [[sheaf|sheaves]] on smooth test spaces, in which case we call them [[smooth spaces]] here, or by co-(pre)sheaves on test spaces, in which case we call them [[structured generalized spaces]] here. \begin{itemize}% \item [[smooth space|Smooth spaces]] \begin{itemize}% \item [[Chen space|Chen spaces]] (called \emph{differentiable spaces} in Chen's works). \item [[diffeological space|Diffeological spaces]] \begin{itemize}% \item [[differentiable stack|Differentiable stacks]]/[[Lie groupoid]]\begin{itemize}% \item [[orbifold|Orbifolds]] \end{itemize} \end{itemize} \item [[∞-Lie groupoid]] \item [[Kriegl and Michor's cartesian closed category of manifolds]] \end{itemize} \item [[CartSp]]-[[structured (∞,1)-topos|Structured (∞,1)-topos]] \begin{itemize}% \item [[differential module|Differential modules]] \item [[Smith space|Smith spaces]] \item [[stratifold|Stratifolds]] \item [[polyfold|Polyfolds]] \item [[derived smooth manifold|Derived smooth manifolds]] \end{itemize} \item both \begin{itemize}% \item [[Froelicher space|Frölicher spaces]] \end{itemize} \end{itemize} The relationships between (some) of the categories can be sumarised by the following diagram. \begin{displaymath} \end{displaymath} I subtracted $20$ from the $x$-coordinates on the names in the diagram so that they would stay in the boxes on my screen, but I'm not sure if this is right; the original looks fine to me as \href{http://www.math.ntnu.no/~stacey/documents/smooth.7-1.svg}{a free-standing diagram}, so I don't know why it looks wrong here. Anyway, if anybody finds that this version is worse than the previous one, then change it back to the previous one and chalk it up to an error in my browser. ---Toby Thanks, Toby. I was just heading over to see if I could fix it myself but you beat me to it. There seem to be a few subtleties over how Instiki imports SVG and I'm learning them by trial and error (and by bugging Jacques!). The picture in the Sandbox now looks right and, thanks to you, so does this one. Text boxes seems to be the trickiest to get right when doing TikZ-to-SVG conversion. ---Andrew It it helps any, I think that the problem was that the alphabetic text (but not the dates) \emph{began} where it ought to have been \emph{centred}. ---Toby \hypertarget{literature}{}\subsection*{{Literature}}\label{literature} Eventually the following will be a \emph{commented} list -- promised. \begin{itemize}% \item John Baez and Alexander Hoffnung, \emph{Convenient Categories of Smooth Spaces} (\href{http://arxiv.org/abs/0807.1704}{arXiv}, \href{http://golem.ph.utexas.edu/category/2008/05/convenient_categories_of_smoot.html}{blog}) \item Patrick Iglesias-Zemmour, \emph{Diffeology} (\href{http://math.huji.ac.il/~piz/Site/The%20Book/The%20Book.html}{pdf}) \item Matthias Kreck, \emph{Stratifolds and differential algebraic topology} (\href{http://www.hausdorff-research-institute.uni-bonn.de/files/kreck-DA24_08_07.pdf}{pdf}) \item William Lawvere, \emph{Taking categories seriously} (\href{http://www.emis.de/journals/TAC/reprints/articles/8/tr8.pdf}{pdf}) \item David Spivak, \emph{Quasi-smooth derived manifolds} (\href{http://math.berkeley.edu/~dspivak/thesis2.pdf}{pdf}) \item Andrew Stacey, \emph{Comparative Smootheology} (\href{http://arxiv.org/abs/0802.2225}{arXiv}) \item Martin Laubinger, \emph{Differential Geometry in Cartesian Closed Categories of Smooth Spaces} (\href{http://etd.lsu.edu/docs/available/etd-02212008-165645/unrestricted/laubingerdiss.pdf}{pdf}) \item Alexander Hoffnung, \emph{Smooth spaces: convenient categories for differential geometry}, (\href{http://math.ucr.edu/~alex/goettingen.pdf}{pdf slides}) \item Alexander Hoffnung, \emph{From Smooth Spaces to Smooth Categories}, (\href{http://aix1.uottawa.ca/~scpsg/Fields09/alex.hoffnung.pdf}{pdf slides}) \end{itemize} There are also Hofer's [[polyfold|polyfolds]]. Concerning [[smooth ∞-stacks]] there is useful material in \begin{itemize}% \item Daniel Dugger, \emph{Sheaves and homotopy theory} (\href{http://math.uoregon.edu/~ddugger/cech.html}{web}, \href{http://ncatlab.org/nlab/files/cech.pdf}{pdf}) \end{itemize} \hypertarget{remarks}{}\subsection*{{Remarks}}\label{remarks} Dual to generalized smooth spaces are [[generalized smooth algebra|generalized smooth algebras]] of functions on them, according to the general lore of [[space and quantity]]. \hypertarget{further_discussion}{}\subsection*{{Further discussion}}\label{further_discussion} We had extensive discussion of generalized smooth spaces at the $n$-Caf\'e{}: \begin{itemize}% \item \emph{Comparative Smootheology} (\href{http://golem.ph.utexas.edu/category/2008/01/comparative_smootheology.html}{I}, \href{http://golem.ph.utexas.edu/category/2008/04/comparative_smootheology_ii.html}{II}, \href{http://golem.ph.utexas.edu/category/2008/09/comparative_smootheology_iii.html}{III}), \href{http://golem.ph.utexas.edu/category/2009/04/comparative_smootheology_iv.html}{IV} \item \href{http://golem.ph.utexas.edu/category/2008/05/convenient_categories_of_smoot.html}{\emph{Convenient categories of smooth spaces}} \item \href{http://golem.ph.utexas.edu/category/2008/08/david_spivak_on_derived_manifo.html}{\emph{Spivak on derived manifolds}} \item \href{http://golem.ph.utexas.edu/category/2008/11/br_on_fiber_integration_in_dif.html}{\emph{B\"a{}r on fiber integration in differential cohomology}} \end{itemize} [[David Roberts]]: For those generalised smooth spaces which give rise to a topological space (e.g. a [[diffeological space]]), is the topology known to be locally contractible, or locally nice at all? [[Andrew Stacey|Andrew]]: That's actually a question I'd quite like to study here. All of the definitions of ``generalised smooth space'' (that have underlying sets) induce a topology on that underlying set. Some have it built in (Chen's early definitions, for example, and Smith spaces and differentiable modules) but even if it is not there you can induce it from the plots or functions. They are not, in general, going to be locally contractible but there are some pathologies that are ruled out. [[David Roberts|David R]]: Clearly the philosophy behind smooth spaces means we have to keep what we get, and not fuss about how ugly the spaces might be. What interests me is what the fundamental group(oid) is going to look like. Will it be a [[profinite group]]? A [[pro-group]]? A smooth group? I suppose one could start with the smooth space of loops, and form the smooth quotient space under the relation of homotopy - but what does it look like? [[!redirects generalized smooth space]] [[!redirects generalized smooth spaces]] [[!redirects generalised smooth space]] [[!redirects generalised smooth spaces]] \end{document}