\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{generalized universal bundle} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy}{}\paragraph*{{Homotopy}}\label{homotopy} [[!include homotopy - contents]] \hypertarget{higher_category_theory}{}\paragraph*{{Higher category theory}}\label{higher_category_theory} [[!include higher category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{groupoid_incarnations_of_universal_principal_bundles}{Groupoid incarnations of universal principal bundles}\dotfill \pageref*{groupoid_incarnations_of_universal_principal_bundles} \linebreak \noindent\hyperlink{ordinary_principal_bundles}{Ordinary $G$-principal bundles}\dotfill \pageref*{ordinary_principal_bundles} \linebreak \noindent\hyperlink{principal_2bundles}{$G$-principal 2-bundles}\dotfill \pageref*{principal_2bundles} \linebreak \noindent\hyperlink{universal_category_bundles_subobject_classifiers}{Universal $n$-category bundles: $n$-subobject classifiers}\dotfill \pageref*{universal_category_bundles_subobject_classifiers} \linebreak \noindent\hyperlink{action_groupoids_as_generalized_bundles}{Action groupoids as generalized bundles}\dotfill \pageref*{action_groupoids_as_generalized_bundles} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Universal bundles -- or [[mapping cocylinder]]s -- are intermediate steps in the computation of [[homotopy fibers]], dual to the that way [[mapping cone]] are intermediate steps in the computation of [[homotopy cofibers]]. It is familiar from topology that one can form the path fibration $P X \to X$ of a [[topological space]]. This can be understood as an example of a general construction where one computes [[homotopy pullbacks]] of the [[point]] -- or, if things are not [[groupoid]]al, [[comma objects]]. Since universal bundles are examples of this construction, we here speak of \emph{generalized universal bundles}. Another appropriate term might be \emph{generalized path fibrations}. One generalizaton of ``generalized universal bundles'' is that the objects in question need not be groupoidal, i.e. they behave like [[directed spaces]]. In this case the [[homotopy pullbacks]] familiar from topology are replaced by [[comma object]] constructions. This is useful in various applications. For instance the constructions [[category of elements]] and [[Grothendieck construction]] can be understood as such directed homotopy pullbacks of the point. See also \begin{itemize}% \item [[fibration sequence]] \begin{itemize}% \item [[homotopy limit]] \item [[homotopy pullback]] \end{itemize} \item [[principal bundle]] \item [[principal 2-bundle]] \item [[principal ∞-bundle]] \end{itemize} and in particular \begin{itemize}% \item [[universal principal ∞-bundle]]. \end{itemize} \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $C$ be a [[closed monoidal category]] with [[interval object]] $I$. Then for any [[pointed object]] $pt \stackrel{pt_B}{\to}B$ in $C$ the \textbf{generalized universal $B$-bundle} is (if it exists) the morphism \begin{displaymath} p : \mathbf{E}_{pt} B \to B \end{displaymath} which is the total composite vertical morphism of the [[pullback]] diagram \begin{displaymath} \itexarray{ \mathbf{E}_{\mathrm{pt}}B &\to& pt \\ \downarrow && \downarrow^{pt_B} \\ [I,B] &\stackrel{d_1}{\to}& B \\ \downarrow^{d_0} \\ B } \,. \end{displaymath} So the object $\mathbf{E}_{pt} := [I,B]\times_{B} pt$ is defined to be the [[pullback]] of the diagram $[I,B] \stackrel{d_1}{\to} B \stackrel{pt_B}{\leftarrow} pt$ and the morphism $\mathbf{E}_{pt}B \to B$ is the composite of the left vertical morphism in the above diagram which comes from the definition of [[pullback]] and $d_0$. Then a (generalized) ``$B$-bundle'' on some object $X$ is a morphism $P \to X$ which is the [[pullback]] of the generalized universal $B$-bundle $\mathbf{E}_{pt}$ along a ``classifying morphism'' $g : X \to B$ \begin{displaymath} \itexarray{ P &\to& \mathbf{E}_{pt} \\ \downarrow && \downarrow \\ X &\stackrel{g}{\to}& B } \end{displaymath} This can be understood as a ``(directed) [[homotopy pullback]]'' of the point: If one defines, as one does, a (possiby [[directed object|directed]]) homotopy between two morphisms $f,g : A \to B$ to be a morphism $\eta : A \to [I,B]$ such that $d_0^* \eta = f$ and $d_1^* \eta = g$, then $P$ is the ``lax pullback'' (really [[comma object]]) of the point along $g$ \begin{displaymath} \itexarray{ P &\to& * \\ \downarrow &\Downarrow& \downarrow^{pt_B} \\ X &\stackrel{g}{\to}& B } \,. \end{displaymath} The generalized universal bundle can be constructed in this way if we take $X = B$: \begin{displaymath} \itexarray{ \mathbf{E}_{pt} &\to& * \\ \downarrow^{p} &\Downarrow& \downarrow^{pt_B} \\ B &\stackrel{id}{\to}& B } \,. \end{displaymath} The [[fiber]] of the generalized universal bundle is the [[loop space object|loop monoid]] $\Omega_{pt} B$: \begin{displaymath} \itexarray{ \Omega_{pt} B &\to& \mathbf{E}_{pt} &\to& * \\ \downarrow & & \downarrow^{p} &\Downarrow& \downarrow^{pt_B} \\ * &\stackrel{pt_B}{\to} & B &\stackrel{id}{\to}& B } \,. \end{displaymath} the sequence \begin{displaymath} \Omega_{pt}B \stackrel{i}{\to} \mathbf{E}_{pt} B \stackrel{p}{\to} B \end{displaymath} is exact in that $i$ is the kernel of $p$ in the sense of kernels of morphisms of [[pointed objects]] (see there). \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{groupoid_incarnations_of_universal_principal_bundles}{}\subsubsection*{{Groupoid incarnations of universal principal bundles}}\label{groupoid_incarnations_of_universal_principal_bundles} In (higher) categorical contexts, take the interval object to the the interval category $I := \{a \to b\}$. Then \hypertarget{ordinary_principal_bundles}{}\paragraph*{{Ordinary $G$-principal bundles}}\label{ordinary_principal_bundles} For $C =$ [[Cat]], $B := \mathbf{B}G$ a one-object groupoid corresponding to a group $G$ with the unique point, $\mathbf{E}_{pt} \mathbf{B}G = \mathbf{E}G = G//G$ is the [[action groupoid]] of $G$ acting on itself. The sequence of groupoids is \begin{displaymath} G \to G//G \to \mathbf{B}G \,. \end{displaymath} This is the universal $G$-bundle in its groupoid incarnation. It is a theorem by Segal from the 1960s that indeed this maps, under [[geometric realization]] to the familiar universal $G$-bundle in $Top$. Moreover, it can be seen that every $G$-principal bundle $P \to X$ in the ordinary sense is the pullback of $\mathbf{E} G$ in the following sense: the $G$-bundle $P \to X$ is classified by a nonabelian $G$-valued 1-cocycle (the transition function of any of its local trivializations), which is an [[anafunctor]] \begin{displaymath} \itexarray{ \hat X &\stackrel{g}{\to}& \mathbf{B}G \\ \downarrow^\pi \\ X } \,. \end{displaymath} (For instance $\hat X$ could be the ech groupoid of a [[cover]] of $X$.) The universal groupoid bundle $\mathbf{E}G \to \mathbf{B}G$ may now be pulled back along this anafunctor to yield the groupoid bundle $g^* \mathbf{E}G \to X$ given by the total left vertical morphism in \begin{displaymath} \itexarray{ g^* \mathbf{E}G &\to& \mathbf{E}G \\ \downarrow && \downarrow \\ \hat X &\stackrel{g}{\to}& \mathbf{B}G \\ \downarrow^\pi \\ X } \,. \end{displaymath} This bundle of groupoids is weakly equivalent to the $G$-principal bundle we started with in that there is a morphism of bundles of groupoids (with $P$ regarded as a bundle of discrete groupoids) \begin{displaymath} \itexarray{ g^* \mathbf{E}G &&\stackrel{\simeq}{\to}&& P \\ & \searrow && \swarrow \\ &&X } \,. \end{displaymath} In fact that horizontal morphism is an acyclic fibration in the [[folk model structure]], i.e. a [[k-surjective functor]] for all $k$. This is recalled in the following reference. \hypertarget{principal_2bundles}{}\paragraph*{{$G$-principal 2-bundles}}\label{principal_2bundles} For $C = 2Cat$, strict 2-categories , $B := \mathbf{B}G$ a strict one-object 2-groupoid corresponding to a strict [[2-group]] $G$ with the unique point, $\mathbf{E}_{pt} \mathbf{B}G = \mathbf{E}G$ was described under the name $INN(G)$ in \begin{itemize}% \item Urs Schreiber, David Roberts, \emph{The inner automorphism 3-group of a strict 2-group}, Journal of Homotopy and Related Structures, Vol. 3(2008), No. 1, pp. 193-244 (\href{http://arxiv.org/abs/0708.1741v2}{arXiv}) \end{itemize} This was shown to be \emph{action bigroupoid} of $G$ acting on itself in \begin{itemize}% \item Igor Bakovi, \emph{Bigroupoid 2-torsors} PhD thesis, Munich (2008) (\href{http://edoc.ub.uni-muenchen.de/9209/}{pdf}). \end{itemize} One can show that every $G$-principal 2-bundle as described in \begin{itemize}% \item Toby Bartels, \emph{2-Bundles} (\href{http://arxiv.org/abs/math.CT/0410328}{arXiv}) \item Christoph Wockel, \emph{\ldots{}} \item Igor Bakovi, \emph{Bigroupoid 2-torsors} PhD thesis, Munich (2008) (\href{http://edoc.ub.uni-muenchen.de/9209/}{pdf}). \end{itemize} indeed is recovered as the pullback of $\mathbf{E} G \to \mathbf{B}G$ along the corresponding cocycle, along the lines described above. The way this works is indicated briefly in the last section of Roberts-Schreiber above. A more detailed description for the moment is in the notes \begin{itemize}% \item Urs Schreiber: [[2bundrecon.pdf:file]] \end{itemize} \hypertarget{universal_category_bundles_subobject_classifiers}{}\subsubsection*{{Universal $n$-category bundles: $n$-subobject classifiers}}\label{universal_category_bundles_subobject_classifiers} One can take $B$ to be something very different from the familiar classifying groupoids. Taking it to be $n Cat$ yields the [[subobject classifiers]] of higher [[topos|toposes]]: \begin{itemize}% \item $\mathbf{E}_{pt} (-1)Cat \to (-1)Cat$ is $\{\top\} \to \{\top, \bottom\}$, the [[subobject classifier]] in [[Set]]. \item $\mathbf{E}_{pt} 0Cat \to 0Cat$ is $Set_* \to Set$, the forgetful functor from [[pointed sets]], which is the 2-[[subobject classifier]] in [[Cat]]. Pullback of this creates the [[category of elements]] of a [[presheaf]]. \item $\mathbf{E}_{pt} Cat \to Cat$ is $Cat_* \to Cat$. Pullback of this is the [[Grothendieck construction]]. \end{itemize} It was David Roberts in the blog comment \begin{itemize}% \item David Roberts, \href{http://golem.ph.utexas.edu/category/2008/01/101_things_to_do_with_a_2class.html#c014559}{comment in: 101 things to do with a 2-classifier} \end{itemize} who first pointed out that these (higher) subobject classifiers are just generalized universal bundles in the above sense. These cases for $n= 0$ and $n=1$ have been considered in the context of universal category bundles in \begin{itemize}% \item Kathryn Hess, \emph{[[HessLackBundCat.pdf:file]]} . \end{itemize} The discussion there becomes more manifestly one of bundles if one regards all morphisms $C \to Set$ appearing there as being the right legs of [[anafunctors]]. There is a well-understood version of this for $n = (\infty,1)$, i.e. for [[(infinity,1)-category|(∞,1)-categories]]. This is described at [[universal fibration of (∞,1)-categories]]. \hypertarget{action_groupoids_as_generalized_bundles}{}\subsubsection*{{Action groupoids as generalized bundles}}\label{action_groupoids_as_generalized_bundles} A morphism $\rho : B \to F$ to a [[pointed object]] $F$ (needs not be a basepoint preserving morphism!) can be regarded as a \emph{representation} of $B$ on the point of $F$. The pullback of the universal $F$-bundle along this morphism \begin{displaymath} \rho^* \mathbf{E}_{pt} F \to B \end{displaymath} can be addressed as the \emph{$F$-bundle \textbf{$\rho$-associated} to the universal $B$-bundle $\mathbf{E}_{pt}B$.} If $B$ is a groupoid, then $\rho^* \mathbf{E}_{pt} F$ is the [[action groupoid]] of $B$ acting on the point of $F$. Further pulling this back along a cocycle $g : \hat X \to B$ of a $B$-principal bundle yields the $\rho$-accociated bundle of that. For instance for $B = \mathbf{B}G$ and $F = Vect$ with $\rho : \mathbf{B}G \to Vect$ a [[representation]] of the group $G$ on a vector space $V$, the $\rho$-associated $\mathrm{Vect}$-bundle on $\mathbf{B}G$ is \begin{displaymath} V \to V//G \to \mathbf{B}G \,. \end{displaymath} Pulling that further back along the cocycle $g : \hat X \to \mathbf{B}G$ classifying a $G$-principal bundle $P \to X$, one obtains the familiar vector bundle $P \times_G V \to X$ which is $\rho$-associated to $P$, along the lines described above: \begin{displaymath} \itexarray{ g^* \rho^*\mathbf{E}_{pt}F &&\stackrel{\simeq}{\to}&& P\times_G V \\ & \searrow && \swarrow \\ &&X } \,. \end{displaymath} [[!redirects generalized universal bundles]] \end{document}