\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{genus} \begin{quote}% this entry is about the notion of \emph{genus} in [[algebraic topology]]/[[cohomology]]. For classification of [[surfaces]] see instead the (related) entry \emph{[[genus of a surface]]}, \emph{[[genus of a curve]]}. There is also [[genus of a lattice]]. \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{index_theory}{}\paragraph*{{Index theory}}\label{index_theory} [[!include index theory - contents]] \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{cobordism_theory}{}\paragraph*{{Cobordism theory}}\label{cobordism_theory} [[!include cobordism theory -- contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{basic}{Basic}\dotfill \pageref*{basic} \linebreak \noindent\hyperlink{InStableHomotopyTheory}{In stable homotopy theory and generalized cohomology theory}\dotfill \pageref*{InStableHomotopyTheory} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{Rationalization}{Rationalization}\dotfill \pageref*{Rationalization} \linebreak \noindent\hyperlink{LogarithmAndCharacteristicSeries}{Logarithm and Characteristic series}\dotfill \pageref*{LogarithmAndCharacteristicSeries} \linebreak \noindent\hyperlink{definition_in_components}{Definition in components}\dotfill \pageref*{definition_in_components} \linebreak \noindent\hyperlink{HirzebruchSeriesViaOrientationsInGeneralizedCohomology}{Definition via orientations in generalized cohomology}\dotfill \pageref*{HirzebruchSeriesViaOrientationsInGeneralizedCohomology} \linebreak \noindent\hyperlink{HirzebruchFormula}{The Hirzebruch formula}\dotfill \pageref*{HirzebruchFormula} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{todd_genus}{Todd genus}\dotfill \pageref*{todd_genus} \linebreak \noindent\hyperlink{signature_genus}{Signature genus}\dotfill \pageref*{signature_genus} \linebreak \noindent\hyperlink{AhatGenus}{$\hat A$-genus}\dotfill \pageref*{AhatGenus} \linebreak \noindent\hyperlink{elliptic_genus}{Elliptic genus}\dotfill \pageref*{elliptic_genus} \linebreak \noindent\hyperlink{witten_genus}{Witten genus}\dotfill \pageref*{witten_genus} \linebreak \noindent\hyperlink{nonexamples}{Non-examples}\dotfill \pageref*{nonexamples} \linebreak \noindent\hyperlink{euler_characteristic}{Euler characteristic}\dotfill \pageref*{euler_characteristic} \linebreak \noindent\hyperlink{RelatedConcepts}{Related concepts}\dotfill \pageref*{RelatedConcepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \hypertarget{basic}{}\subsubsection*{{Basic}}\label{basic} For $R$ a ([[commutative ring|commutative]]) [[ring]], an $R$-valued \textbf{genus} is a ring [[homomorphism]] into $R$ \begin{displaymath} \sigma : \Omega_\bullet \to R \end{displaymath} from a [[cobordism ring]] for [[cobordisms]] with specified structure; typical choices being [[orientation]] or [[stable complex structure]]. Often the rationalization of such a morphism is meant, see below at \emph{\hyperlink{Rationalization}{Properties -- Rationalization}}. To emphasize that this is indeed a ring homomorphism and hence in particular respects the multiplicative structure, a genus is sometimes (especially in older literature) synonymously called a \emph{multiplicative genus}. \hypertarget{InStableHomotopyTheory}{}\subsubsection*{{In stable homotopy theory and generalized cohomology theory}}\label{InStableHomotopyTheory} Since the [[cobordism ring]] is the ring of coefficients of the corresponding universal [[Thom spectrum]], e.g $M U$, $M SO$, so a genus may also be written as a ring homomorphism of the form \begin{displaymath} M SO_\ast \longrightarrow R \end{displaymath} or \begin{displaymath} M U_\ast \longrightarrow R \end{displaymath} respectively. Written this way it is immediate that genera arise naturally as the value on [[homotopy groups]] (the ``[[decategorification]]'' or ``de-homotopification'') of homomorphisms of [[E-∞ ring]] [[spectra]] from an actual universal [[Thom spectrum]] to some [[E-∞ ring]] $E$ with [[coefficient]] ring $R$ \begin{displaymath} M SO \longrightarrow E \end{displaymath} or \begin{displaymath} M U \longrightarrow E \,. \end{displaymath} This in turn induces multiplicative morphisms of the [[cohomology theories]] [[Brown representability theorem|represented]] by these spectra (the domain being hence [[cobordism cohomology theory]]), and these multiplicative maps are the ``families version'' of the given genus/[[index]] (\hyperlink{Hopkins94}{Hopkins 94, section 3}). Such homomorphisms in turn arise naturally from [[orientation in generalized cohomology|universal orientations in generalized E-cohomology]]. Namely such an orientation is a [[homotopy]] of the form \begin{displaymath} \itexarray{ \ast && \longleftarrow && B SO \\ & {}_{\mathllap{0}}\searrow & \swArrow_\sigma & \swarrow_{\mathrlap{J}} \\ && B GL_1(E) \\ && \downarrow \\ && E Mod } \end{displaymath} (a trivialization of the $E$-[[(∞,1)-module bundle]] [[associated ∞-bundle|associated]] to the [[spherical fibration]] given by the [[J-homomorphism]]) and under forming [[homotopy colimits]] in $E$[[(∞,1)Mod]] this becomes an $E$-linear map \begin{displaymath} M SO \wedge E \longleftarrow E \end{displaymath} hence a map \begin{displaymath} M SO \longleftarrow E \,. \end{displaymath} At least in some important cases, genera seem to be naturally understood as encoding [[sigma-model]] [[quantum field theories]]. For $G$ some structure, the [[Thom spectrum]] $M G$ is the classifying space of [[manifolds]] with [[G-structure]], and hence may be thought of as classifying [[target spaces]] for [[sigma-models]]. The codomain spectrum $R$ itself may then be thought of as a classifying space for a certain class of QFTs, and hence the genus $\sigma : M G \to R$ can be thought of as assigning to any target space the corresponding [[sigma-model]]. This is for instance the case at least over the point for the [[A-hat genus]] $M Spin \to K O$, which may be thought of as sending manifolds with [[spin structure]] to the corresponding [[(1,1)-dimensional Euclidean field theories and K-theory|(1,1)-supersymmetric EFT]] (``[[spinning particle]]''); and for the [[Witten genus]] $M String \to tmf$, which can be thought of as sending a manifold with [[string structure]] to the corresponding [[(2,1)-dimensional Euclidean field theories and tmf|(2,1)-supersymmetric EFT]] (``[[heterotic string]]''). \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{Rationalization}{}\subsubsection*{{Rationalization}}\label{Rationalization} When the [[coefficient]] [[ring]] $R$ does not have additive [[torsion]], then any ring homomorphism \begin{displaymath} \phi \colon \Omega^{U/SO}_\bullet \longrightarrow R \end{displaymath} is determined already by its rationalization \begin{displaymath} \phi \colon \Omega^{U,SO}_\bullet\otimes \mathbb{Q} \longrightarrow R \otimes \mathbb{Q} \end{displaymath} which is traditionally denoted by the same symbol. The rational [[cobordism rings]] in turn are known to be [[polynomial rings]] \begin{displaymath} \Omega^U_\bullet\otimes \mathbb{Q} \simeq \mathbb{Q}[\mathbb{C}P^1,\mathbb{C}P^2, \cdots ] \end{displaymath} \begin{displaymath} \Omega^{SO}_\bullet\otimes \mathbb{Q} \simeq \mathbb{Q}[\mathbb{C}P^2,\mathbb{C}P^4, \cdots ] \end{displaymath} whose generators are identified with the cobordism classes of the manifolds which are the complex [[projective spaces]], as indicated. \hypertarget{LogarithmAndCharacteristicSeries}{}\subsubsection*{{Logarithm and Characteristic series}}\label{LogarithmAndCharacteristicSeries} \hypertarget{definition_in_components}{}\paragraph*{{Definition in components}}\label{definition_in_components} Given a (rational) genus $\phi \colon \Omega^{U,SU}_\bullet\otimes \mathbb{Q} \to R \otimes \mathbb{Q}$ one defines (we follow (\hyperlink{Hopkins94}{Hopkins 94})) \begin{enumerate}% \item its \emph{logarithm} to be the [[formal power series]] over $R \otimes \mathbb{Q}$ given by \begin{displaymath} log_\phi(z) \coloneqq \sum_{n \in \mathbb{N}} \phi(\mathbb{C}P^n) \frac{z^{n+1}}{n+1}; \end{displaymath} \item its \emph{characteristic series} (or \emph{Hirzebruch series}) to be the formal power series over $R \otimes \mathbb{Q}$ \begin{displaymath} K_\phi(z) \coloneqq \frac{z}{\exp_\phi(z)} \,, \end{displaymath} where $\exp_\phi$ is the inverse of the logarithm; \item its \emph{characteristic class} as the [[universal characteristic class]] which via the [[splitting principle]] is fixed by its value on the universal line bundle as \begin{displaymath} K_\phi(c_1) \in H^\bullet(B U(1),R \otimes \mathbb{Q}) \end{displaymath} where $c_1 \in H^2(B U(1), \mathbb{Z})$ denotes the universal [[first Chern class]]; hence its value on a [[direct sum]] $L_1 \oplus \cdots \oplus L_k$ of [[complex line bundles]] is \begin{displaymath} \prod_{i} K_\phi(c_1(L_i)) \,. \end{displaymath} \end{enumerate} \hypertarget{HirzebruchSeriesViaOrientationsInGeneralizedCohomology}{}\paragraph*{{Definition via orientations in generalized cohomology}}\label{HirzebruchSeriesViaOrientationsInGeneralizedCohomology} Suppose that the given genus $\Omega_\bullet^{SO} \longrightarrow R$ indeed comes from an [[orientation in generalized cohomology]] (as discussed \hyperlink{InStableHomotopyTheory}{above}) hence from a [[homomorphism]] of [[E-∞ rings]] \begin{displaymath} \beta \;\colon\; M SO \longrightarrow E \end{displaymath} for an [[E-∞ ring]] $E$ with [[homotopy groups]] $R\simeq \pi_\bullet(E)$. (And suppose that $E$ defines a [[complex oriented cohomology theory]].) This defines (\hyperlink{AndoHopkinsRezk10}{Ando-Hopkins-Rezk 10, prop. 2.11}) a universal [[orientation in generalized cohomology|orientation]] of real vector bundles and hence of [[complex vector bundles]] and hence of [[complex line bundles]] in $E$-cohomology \begin{displaymath} \beta \;\colon\; M U \longrightarrow M SO \stackrel{\beta}{\longrightarrow} E \,. \end{displaymath} Now rationally, i.e. for $E\otimes \mathbb{Q}$, there is a canonical such orientation, given by the composite \begin{displaymath} \alpha \;\colon\; M U \longrightarrow M SO \longrightarrow H \mathbb{Q} \simeq \mathbb{S}\otimes \mathbb{Q} \stackrel{}{\longrightarrow} E \otimes \mathbb{Q} \,. \end{displaymath} Thus, given any orientation $\beta$, its rationalization may be compared to $\alpha$. Since these rational orientations are equivalently trivializations of maps to $B GL_1(E \otimes \mathbb{R})$, their difference is a class $\beta/\alpha$ with coefficients in $GL_1(E\otimes R)$, hence over any space $X$ the difference is a class in $H^0(X, \pi_\bullet E\otimes \mathbb{Q})^\times$. Specifically consider the [[delooping]] $X= B U(1)$ of the [[circle group]]. For this the [[cohomology ring]] is the [[power series]] ring in a single [[variable]] (the universal [[first Chern class]] $c_1(L)$). Under the canonical inclusion $B U(1)\to B U$ both the above orientations $\beta$ and $\alpha$ pull back, so that we have a difference \begin{displaymath} K_\beta \coloneqq \beta/\alpha \in (E_\bullet \otimes \mathbb{Q})[ [ c_1(L) ] ] \,. \end{displaymath} This is the Hirzebruch series of $\beta$ (\hyperlink{AndoHopkinsRezk10}{Ando-Hopkins-Rezk 10, def. 3.10}). If $F$ denotes the [[formal group law]] classified via $MU_\bullet \to M SO_\bullet \stackrel{\beta_\bullet}{\to} E_\bullet$ then \begin{displaymath} K_\beta(z) = \frac{z}{\exp_F(z)} \end{displaymath} \hypertarget{HirzebruchFormula}{}\subsubsection*{{The Hirzebruch formula}}\label{HirzebruchFormula} The central theorem of (\hyperlink{Hirzebruch66}{Hirzebruch 66}) expresses the genus of an arbitrary ([[cobordism class]] of a) manifold $X$ of [[dimension]] $2n$ via the formula \begin{displaymath} \phi(X) = \langle \prod_{i = 1}^n K_\phi(x_i(T X)), [X] \rangle \end{displaymath} in terms of the Hirzebruch characteristic series $K_\phi$ discussed \hyperlink{LogarithmAndCharacteristicSeries}{above}, and via the [[splitting principle]]: This means that $\prod_{i = 1}^n K_\phi(x_i(T X))$ is the function of [[Chern classes]] $c_k$ (i.e. [[Pontryagin classes]] $P_{2k}$ and [[Euler classes]] $\chi$) obtained by rewriting the [[polynomial]] in the $x_i$ (the ``[[Chern roots]]'') as a polynomial in [[elementary symmetric polynomials]] $\sigma_k(x_1,\cdots, x_n)$ and then substituting for each of these by $c_k(T X)$. (see also e.g. \href{http://www.map.mpim-bonn.mpg.de/Formal_group_laws_and_genera#Construction}{ManifoldAtlas -- Genera -- 4.1 Construction}). \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{todd_genus}{}\subsubsection*{{Todd genus}}\label{todd_genus} The [[Todd genus]] is the genus with logarithm \begin{displaymath} -log_{Todd}(1-x) = \sum_{n \in \mathbb{N}} \frac{x^n}{n} \end{displaymath} \hypertarget{signature_genus}{}\subsubsection*{{Signature genus}}\label{signature_genus} The [[signature genus]]; \hypertarget{AhatGenus}{}\subsubsection*{{$\hat A$-genus}}\label{AhatGenus} The [[A-hat genus]] is the [[index of a Dirac operator]] coming from a [[spin bundle]] in KO-theory. It is given by the characteristic series The \href{genus#LogarithmAndCharacteristicSeries}{characteristic series} of the $\hat A$-genus is \begin{displaymath} \begin{aligned} K_{\hat A}(e) & = \frac{z}{e^{z/2} - e^{-z/2}} \\ &= \exp\left( - \sum_{k \geq 2} \frac{B_k}{k} \frac{z^k}{k!} \right) \end{aligned} \,, \end{displaymath} where $B_k$ is the $k$th [[Bernoulli number]] (\hyperlink{AndoHopkinsRezk10}{Ando-Hopkins-Rezk 10, prop. 10.2}). The $\hat A$-genus is an [[integer]] on manifolds with [[spin structure]]. \hypertarget{elliptic_genus}{}\subsubsection*{{Elliptic genus}}\label{elliptic_genus} An [[elliptic genus]] is one whose logarithm is given by \begin{displaymath} log_{ell}(z) = \int_0^z (1-2 \delta t^2 + \epsilon t^4)^{-1/2} d t \end{displaymath} for constants $\delta, \epsilon$ with non-degenerate values $\delta^2 \neq \epsilon$ and $\epsilon = 0$. For degenerate choices this reproduces the [[signature genus]] and the [[A-hat genus]] above, see at \emph{[[elliptic genus]]} for more. For non-degenerate values one may regard $\epsilon$ and $\delta$ as values of [[modular forms]] of the same name and hence regard all elliptic genera together as one single genus with [[coefficients]] in $MF_\bullet(\Gamma_0(2))$. This ``universal'' elliptic genus is the \emph{[[Witten genus]]}. \hypertarget{witten_genus}{}\subsubsection*{{Witten genus}}\label{witten_genus} The [[Witten genus]] \begin{displaymath} w \colon \Omega^{SO}_\bullet \longrightarrow \mathbb{Q}[ [q] ] \end{displaymath} is the genus with [[coefficients]] in the [[power series]] ring $\mathbb{Q}[ [ q ] ]$ with characteristic series given by \begin{displaymath} \begin{aligned} K_w(z) & = \frac{z/2}{sinh(z/2)} \prod_{n \geq 1} \frac{(1-q^n)^2}{(1-q^n e^z)(1-q^n e^{-z})} \\ & = \exp\left( \sum_{k \geq 2} G_k \frac{z^k}{k!} \right) \end{aligned} \,, \end{displaymath} where $G_k$ are the [[Eisenstein series]] (\href{AndoHopkinsStrickland01}{Ando-Hopkins-Strickland 01}, \hyperlink{AndoHopkinsRezk10}{Ando-Hopkins-Rezk 10, prop. 10.9}). (Notice that the constant term in $G_k$ is proportional to the $k$th [[Bernoulli number]], so that indeed the exponential expression matches that for the \hyperlink{AhatGenus}{A-hat genus above}.) On [[manifolds]] with [[spin structure]] the Witten genus takes values in $\mathbb{Z}[ [ q ] ]$ On manifolds with rational [[string structure]] it takes values in (the $q$-expansion of) [[modular forms]] for $SL_2(\mathbb{Z})$, meaning that setting $q = e^{2 \pi i \tau}$ then as a function $f$ of the parameter $\tau$ taking values in the [[upper half plane]] the Witten genus satisfies \begin{displaymath} f(-1/\tau) = (-\tau)^n f(\tau) \,. \end{displaymath} Finally on manifolds with actual [[string structure]] it takes values in [[topological modular forms]]. See at \emph{[[Witten genus]]} for more. \hypertarget{nonexamples}{}\subsection*{{Non-examples}}\label{nonexamples} \hypertarget{euler_characteristic}{}\subsubsection*{{Euler characteristic}}\label{euler_characteristic} The [[Euler characteristic]] $X \mapsto \chi(X)$ is close to being a genus, but is \emph{not} [[cobordism]] invariant (this is the [[index]] of the [[Dirac operator]] $D = d + d^\dagger$) \hypertarget{RelatedConcepts}{}\subsection*{{Related concepts}}\label{RelatedConcepts} [[!include genera and partition functions - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} The abstract concept of genus is due to [[Friedrich Hirzebruch]]. It had evolved out of the older concept of (arithmetic) [[genus of a surface]] via the concept of [[Todd genus]] introduced in \begin{itemize}% \item [[John Arthur Todd]], \emph{The arithmetical invariants of algebraic loci}, Proc. London Math. Soc. (2), Ser. 43, 1937, 190--225. \end{itemize} An review of the history is at the beginning of (\hyperlink{HirzebruchKreck09}{Hirzebruch-Kreck 09}) The theory of multiplicative sequences and characteristic series of genera is due to \begin{itemize}% \item [[Friedrich Hirzebruch]], \emph{Neue topologische Methoden in der algebraischen Geometrie}, Ergebnisse der Mathematik und ihrer Grenzgebiete, 9, Springer-Verlag, Berlin-G\"o{}ttingen-Heidelberg, 1965. \item [[Friedrich Hirzebruch]], \emph{Topological methods in algebraic geometry}, Springer-Verlag, New York, 1966. MR0202713 (34 \#2573) Zbl 0843.14009 \end{itemize} Reviews include \begin{itemize}% \item [[Serge Ochanine]], \emph{What is\ldots{} an elliptic genus}?, Notices of the AMS, volume 56, number 6 (2009) (\href{http://www.ams.org/notices/200906/rtx090600720p.pdf}{pdf}) \item [[Friedrich Hirzebruch]], [[Matthias Kreck]], \emph{On the concept of genus in topology and complex analysis}, Notices of the AMS, volume 56, number 6 (2009) \href{http://www.ams.org/notices/200906/rtx090600713p.pdf}{pdf} \item [[Michael Hopkins]], section 2 of \emph{Topological modular forms, the Witten Genus, and the theorem of the cube}, Proceedings of the International Congress of Mathematics, Z\"u{}rich 1994 (\href{http://www.mathunion.org/ICM/ICM1994.1/Main/icm1994.1.0554.0565.ocr.pdf}{pdf}) \item Manifold Atlas, \emph{\href{http://www.map.mpim-bonn.mpg.de/Formal_group_laws_and_genera}{Formal group laws and genera}} \item Wikipedia, \emph{\href{http://en.wikipedia.org/wiki/Genus_of_a_multiplicative_sequence}{Genus of a multiplicative series}} \item \href{wwwmath.uni-muenster.de/reine/inst/lueck/lehre/.../summary6.}{} \end{itemize} Discussion in terms of [[orientations in generalized cohomology]] and specifically for the [[A-hat genus]] and the [[Witten genus]] is in \begin{itemize}% \item [[Matthew Ando]], [[Michael Hopkins]], [[Neil Strickland]], \emph{Elliptic spectra, the Witten genus and the theorem of the cube}, Invent. Math. 146 (2001) 595--687 MR1869850 \item [[Matthew Ando]], [[Mike Hopkins]], [[Charles Rezk]], \emph{Multiplicative orientations of KO-theory and the spectrum of topological modular forms}, 2010 (\href{http://www.math.uiuc.edu/~mando/papers/koandtmf.pdf}{pdf}) \end{itemize} [[!redirects genera]] [[!redirects Hirzebruch series]] \end{document}