\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{geodesic flow} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{riemannian_geometry}{}\paragraph*{{Riemannian geometry}}\label{riemannian_geometry} [[!include Riemannian geometry - contents]] \hypertarget{differential_geometry}{}\paragraph*{{Differential geometry}}\label{differential_geometry} [[!include synthetic differential geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{Properties}{Properties}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{properties_of_the_injectivity_radius}{Properties of the injectivity radius}\dotfill \pageref*{properties_of_the_injectivity_radius} \linebreak \noindent\hyperlink{lower_bounds_on_the_injectivity_radius}{Lower bounds on the injectivity radius}\dotfill \pageref*{lower_bounds_on_the_injectivity_radius} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For $(X,g)$ a [[Riemannian manifold]] and $p \in X$ a point, the \textbf{geodesic flow} at $p$ is the map defined on an open neighbourhood of the origin in $(T_p X ) \times \mathbb{R}$ that sends $(v,r)$ to the endpoint of the [[geodesic]] that starts with tangent vector $v$ at $p$ and has length $r$. (\ldots{}) \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $(X,g)$ be a [[Riemannian manifold]] \begin{udefn} (\ldots{}) geodesic flow (\ldots{}) \end{udefn} The following are some auxiliary definitions that serve to analyse properties of geodesic flow (see \hyperlink{Properties}{Properties}). For $p \in X$ a point and $r \in \mathbb{R}$ a positive real number, we write \begin{displaymath} B_p(r) = \{x \in X | d(p,x) \lt r\} = \{ \exp( v) : T_p X \to X | |v| \lt r \} \subset X \end{displaymath} for set of points which are of [[distance]] less than $r$ away from $p$. As the propositions \hyperlink{Properties}{below} assert, for small enough $r$ this is [[diffeomorphic]] to an [[open ball]] and we speak of \emph{metric balls} or \emph{geodesic balls} . \hypertarget{definition_3}{}\paragraph*{{Definition}}\label{definition_3} For $p \in P$ a point, the \textbf{injectivity radius} $inj_p \in \mathbb{R}$ is the [[supremum]] over all values of $r \in \mathbb{R}$ such that the geodesic flow starting at $p$ with radius $r$ $\exp(-) : B_r(T_p X) \to X$ is a [[diffeomorphism]] onto its image. The injectivity radius of $(X,g)$ is the infimum of the injectivity radii at each point. \hypertarget{Properties}{}\subsection*{{Properties}}\label{Properties} \hypertarget{properties_of_the_injectivity_radius}{}\subsubsection*{{Properties of the injectivity radius}}\label{properties_of_the_injectivity_radius} \begin{uproposition} The injectivity radius is \begin{itemize}% \item either equal to half the length of the smalled periodic geodesic, \item or equal to the smallest distance between two conjugate points. \end{itemize} \end{uproposition} This appears for instance as scholium 91 in (\hyperlink{Berger}{Berger}). \hypertarget{lower_bounds_on_the_injectivity_radius}{}\subsubsection*{{Lower bounds on the injectivity radius}}\label{lower_bounds_on_the_injectivity_radius} There are several lower boundas on the \hyperlink{InjectivityRadius}{injectivity radius} of a Riemannian manifold. \begin{uproposition} The [[convexity radius]] is always less than or equal to half of the injectivity radius: \begin{displaymath} conv (X,g) \leq \frac{1}{2} inj(X,g) \,. \end{displaymath} \end{uproposition} This appears for instance as proposition IX.6.1 in \hyperlink{Chavel}{Chavel}, where it is attributed to M. Berger (1976). In (\hyperlink{Berger}{Berger}) it is proposition 95. Let $R$ be the [[Riemann curvature]] tensor of $g$. For $p \in X$ the [[sectional curvature]] of a plane spanned by vectors $v,w \in T_p X$ is \begin{displaymath} K(v,w) := \frac{R(v,w,v,w)}{g(v,v)g(w,w) - g(v,w)^2} \,. \end{displaymath} Say that $(X,g)$ is \textbf{complete} if, equivalently, \begin{itemize}% \item with the [[distance]] function $X$ is a [[complete metric space]]; \item $(X,g)$ is geodesically complete in that for all $v \in T_p X$ the flow $t \mapsto \exp_p(t v)$ exists for all $t \in \mathbb{R}$. \end{itemize} \begin{utheorem} Let $(X,g)$ be complete and such that \begin{enumerate}% \item the [[absolute value]] of the sectional curvature at all points is bounded from above; \item the [[volume]] of the geodesic unit ball at all points is bounded from below. \end{enumerate} Then the injectivity radius is positive. \end{utheorem} This is due to (\hyperlink{CheegerGromovTaylor}{CheegerGromovTaylor}). A survey is in (\hyperlink{Grant}{Grant}). \begin{utheorem} Every [[paracompact manifold]] admits a complete [[Riemannian metric]] with \begin{itemize}% \item bounded absolute sectional curvature; \item positive convexity radius \item and hence with positive injectivity radius. \end{itemize} \end{utheorem} This is shown in (\hyperlink{Greene}{Greene}). \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Gabriel Paternein, \emph{Geodesic flows} Birkh\"a{}user (1999) \end{itemize} The following is literature on injectivity radius estimates A general exposition is in sectin 6 ``Injectivity, Convexity radius and cut locuss'' of \begin{itemize}% \item Marcel Berger, \emph{A panoramic view of Riemannian geometry} \end{itemize} Also section IX of \begin{itemize}% \item Isaac Chavel, \emph{Riemannian geometry: a modern introduction} \end{itemize} A survey of the main estimates is in \begin{itemize}% \item James Grant, \emph{Injectivity radius estimates} (\href{http://www.mat.univie.ac.at/~grant/papers/talk.pdf}{pdf}) \end{itemize} The main theorem is due to \begin{itemize}% \item [[Jeff Cheeger]], M. Gromov, and M. Taylor, \emph{Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds} , J. Differential Geom., 17 (1982), pp. 15--53. \end{itemize} Older results on compact manifolds are in \begin{itemize}% \item [[Jeff Cheeger]], \emph{Finiteness theorems for Riemannian manifolds} . \end{itemize} The existence of metrics with all the required propertiers for the injectivity estimates (completeness, bounded absolute sectional curvature) on paracompact manifolds is shown in \begin{itemize}% \item R. Greene, \emph{Complete metrics of bounded curvature on noncompact manifolds} Archiv der Mathematik Volume 31, Number 1 (1978) \end{itemize} More discussion of construction of Riemannian manifolds with bounds on curvature and volume is in \begin{itemize}% \item John Lott, Zhongmin Chen, \emph{Manifolds with quadratic curvature decay and slow volume growth} (\href{http://math.berkeley.edu/~lott/science.pdf}{pdf}) \end{itemize} Analogous results for [[Lorentzian manifold]]s are discussed in \begin{itemize}% \item Bing-Long Chen, Philippe G. LeFloch, \emph{Injectivity Radius of Lorentzian Manifolds} (\href{http://philippelefloch.files.wordpress.com/2009/12/2008-chenlefloch-cmp.pdf}{pdf}) \end{itemize} [[!redirects injectivity radius]] \end{document}