\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{geometric Langlands correspondence} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{langlands_correspondence}{}\paragraph*{{Langlands correspondence}}\label{langlands_correspondence} [[!include Langlands correspondence -- contents]] \hypertarget{duality}{}\paragraph*{{Duality}}\label{duality} [[!include duality - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{Idea}{Idea}\dotfill \pageref*{Idea} \linebreak \noindent\hyperlink{Properties}{Properties}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{AbelianCase}{Abelian case}\dotfill \pageref*{AbelianCase} \linebreak \noindent\hyperlink{RelationToSDuality}{Relation to S-duality}\dotfill \pageref*{RelationToSDuality} \linebreak \noindent\hyperlink{RelationToTDuality}{Relation to T-duality}\dotfill \pageref*{RelationToTDuality} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{ReferencesOriginal}{Original}\dotfill \pageref*{ReferencesOriginal} \linebreak \noindent\hyperlink{surveys_and_reviews}{Surveys and reviews}\dotfill \pageref*{surveys_and_reviews} \linebreak \noindent\hyperlink{further_resources}{Further resources}\dotfill \pageref*{further_resources} \linebreak \noindent\hyperlink{ReferencesInterpretationInStringTheory}{Interpretation in string theory}\dotfill \pageref*{ReferencesInterpretationInStringTheory} \linebreak \noindent\hyperlink{global}{Global}\dotfill \pageref*{global} \linebreak \noindent\hyperlink{local}{Local}\dotfill \pageref*{local} \linebreak \hypertarget{Idea}{}\subsection*{{Idea}}\label{Idea} The [[conjecture|conjectural]] \emph{geometric Langlands correspondence} is meant to be an [[analogy|analog]] of the [[number theory|number theoretic]] [[Langlands correspondence]] under the [[function field analogy]], hence with [[number fields]] replaced by [[function fields]] and further replaced by [[rational functions]] on [[complex curves]]. The key to this analogy is the [[Weil uniformization theorem]] which expresses the [[moduli stack of G-principal bundles]] over an [[algebraic curve]] as a [[double coset space]] of various function rings (as discussed at \emph{\href{moduli+space+of+bundles#OverCurvesAndTheLanglandsCorrespondence}{Moduli of bundles over curves}}) of just the kind as they appear in the number-theoretic [[Langlands correspondence]] (for instance in the [[Artin reciprocity law]] and in the definition of [[automorphic representations]]). [[!include Langlands analogies -- table]] The original version of the conjectured statement of \emph{geometric Langlands duality} (going back to \hyperlink{BeilinsonDrinfeld9x}{Beilinson-Drinfeld 9x} and reviewed for instance in \hyperlink{Frenkel05}{Frenkel 05}) asserts that for $G$ a [[reductive group]] and for $\Sigma$ an [[algebraic curve]], then there is an [[equivalence of categories|equivalence]] of [[derived categories]] of, on the one hand, [[D-modules]] on the [[moduli stack of G-principal bundles]] on $\Sigma$, and, on the other hand, [[quasi-coherent sheaves]] on the ${}^L G$-[[moduli stack of local systems]] on $\Sigma$: \begin{displaymath} \mathcal{O}Mod(Loc_{{}^L G}(\Sigma)) \stackrel{\simeq}{\longrightarrow} \mathcal{D} Mod( Bun_G(\Sigma)) \end{displaymath} for ${}^L G$ the [[Langlands dual group]]. Moreover, the conjecture asserts that there is canonical such an equivalence which is a [[non-abelian cohomology|non-abelian]] analogue of the [[Fourier-Mukai transform|Fourier-Mukai]] [[integral transform]] and takes [[skyscraper sheaves]] on the left ([[categorification|categorified Dirac distributions]]) to what are called ``[[Hecke eigensheaves]]'' on the right. This equivalence is in turn supposed to be a certain limit of the more general [[quantum geometric Langlands correspondence]] that identifies [[twisted D-modules]] on both sides. For the abelian case that $G$ is a [[torus]] the above equivalence has indeed been proven, given by a [[Fourier-Mukai transform]] (\hyperlink{Laumon85}{Laumon 85}, \hyperlink{Laumon96}{Laumon 96}, \hyperlink{Rothstein96}{Rothstein 96}), see also \hyperlink{AbelianCase}{below}. However, in general the above version of the conjecture is false. For instance it fails in the case $G = SL_2$ and $\Sigma= \mathbb{P}^1$ (\hyperlink{Lafforgue09}{Lafforgue 09}). A refined formulation of the conjecture due to (\hyperlink{ArinkinGaitsgory12}{Arinkin-Gaitsgory 12}), meant to fix this failure, replaces plain quasicoherent sheaves with certain ``nilpotent'' [[ind-objects]] of quasicoherent sheaves and refines [[derived categories]] to [[stable (∞,1)-categories]], to make the conjecture read \begin{displaymath} (Ind(\mathcal{O}Mod(Loc_{{}^L G}(\Sigma))))_{Nilp_{Glob}} \stackrel{\simeq}{\longrightarrow} \mathcal{D} Mod( Bun_G(\Sigma)) \end{displaymath} (\hyperlink{ArinkinGaitsgory12}{Arinkin-Gaitsgory 12, conjecture 0.1.6}). This form is called the [[categorical geometric Langlands conjecture]]. Since [[D-modules]] on [[moduli stacks of G-principal bundles]] play a central role in [[gauge theory|gauge]] [[quantum field theory]] (in particular as [[Hitchin connections]] on bundles of [[conformal blocks]] of $G$-[[Chern-Simons theory]] [[holographic principle|holographically]] dual to the [[WZW model]] [[2d conformal field theory]]) and since the [[Langlands dual group]] also appears in [[electric-magnetic duality]], it has long been suggested (\href{S-duality#Atiyah77}{Atiyah 77}) that geometric Langlands duality has a distinguished meaning also in [[mathematical physics]] in general and in [[string theory]] in particular. One proposal for a realization of the correspondence as an incarnation of [[mirror symmetry]]/[[S-duality]] is due to (\hyperlink{KapustinWitten06}{Kapustin-Witten 06}), which however has not been turned into [[theorems]] yet. Another proposal for realizing the [[local Langlands correspondence|local]] correspondence via another incarnation of [[mirror symmetry]] is due to (\hyperlink{GerasimovLebedevOblezin09}{Gerasimov-Lebedev-Oblezin 09}). The geometric Langlands conjecture has been motivated from the [[number theory|number theoretic]] [[Langlands correspondence]] via the [[function field analogy]] and some educated guessing, but there is to date no formalization of this analogy that would allow to regard number-theoretic and the geometric correspondence as two special cases of one ``global'' [[arithmetic geometry]]/[[global analytic geometry]] statement. Cautioning remarks on the accuracy of the analogy and on the rigour of the mirror-symmetric proposals may be found in (\hyperlink{Langlands14}{Langlands 14}). Some discussion of how to possibly start to go about making the analogy more systematic are at \emph{[[differential cohesion and idelic structure]]}. [[!include function field analogy -- table]] \hypertarget{Properties}{}\subsection*{{Properties}}\label{Properties} \hypertarget{AbelianCase}{}\subsubsection*{{Abelian case}}\label{AbelianCase} In the case where $G$ is the [[multiplicative group]], hence where all bundles in question are [[line bundles]], geometric Langlands duality is well understood and is in fact a slight variant of a [[Fourier-Mukai transform]] (\hyperlink{Frenkel05}{Frenkel 05, section 4.4, 4.5}). \hypertarget{RelationToSDuality}{}\subsubsection*{{Relation to S-duality}}\label{RelationToSDuality} The [[Kapustin-Witten TQFT]] (\hyperlink{KapustinWitten06}{KapustinWitten 2007}) is supposed to exhibit geometric Langlands duality as a special case of [[S-duality]]. See also at \emph{\href{http://ncatlab.org/nlab/show/Kaluza-Klein+mechanism#Formalization}{KK-compactification -- Formalization}} [[!include geometric Langlands QFT -- table]] [[!include gauge theory from AdS-CFT -- table]] \hypertarget{RelationToTDuality}{}\subsubsection*{{Relation to T-duality}}\label{RelationToTDuality} In some cases the passage between a Lie group and its [[Langlands dual group]] can be understood as a special case of [[T-duality]]. (\hyperlink{DaenzerErp}{Daenzer-vanErp}) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[geometric class field theory]] \item [[geometric Satake equivalence]] \item [[Hitchin fibration]] \item [[topologically twisted D=4 super Yang-Mills theory]] \end{itemize} [[duality in physics]], [[duality in string theory]] \begin{itemize}% \item [[S-duality]] \begin{itemize}% \item [[electro-magnetic duality]] \begin{itemize}% \item [[Montonen-Olive duality]] \end{itemize} \item [[Seiberg duality]] \item \textbf{geometric Langlands correspondence} \begin{itemize}% \item [[S-duality]], [[Kapustin-Witten TQFT]] \end{itemize} \item [[quantum geometric Langlands correspondence]] \end{itemize} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{ReferencesOriginal}{}\subsubsection*{{Original}}\label{ReferencesOriginal} The conjecture goes back to \begin{itemize}% \item [[Alexander Beilinson]], [[Vladimir Drinfeld]], section 5.2.7 of \emph{Quantization of the Hitchin system and Hecke eigensheaves}, (\href{http://www.math.uchicago.edu/~mitya/langlands/hitchin/BD-hitchin.pdf}{pdf}) \end{itemize} based on \begin{itemize}% \item [[Gérard Laumon]], sections 5.3 and 4.3.3. of \emph{Correspondance de Langlands g\'e{}om\'e{}trique pour les corps de fonctions}, Duke Math. Jour., vol. 54 (1987), 309-359 \end{itemize} Proof in the abelian case is due to \begin{itemize}% \item [[Gérard Laumon]], \emph{Transformation de Fourier g\'e{}om\'e{}trique} Preprint IHES/85/M/52 (1985) \item [[Gérard Laumon]], \emph{Transformation de Fourier g\'e{}n\'e{}ralis\'e{}e} (\href{http://arxiv.org/abs/alg-geom/9603004}{arXiv:alg-geom/9603004}) \item [[Gérard Laumon]], \emph{Travaux de Frenkel, Gaitsgory et Vilonen sur la correspondance de Drinfeld-Langlands}, \href{http://arxiv.org/abs/math.AG/0207078}{math.AG/0207078} \item M. Rothstein. \emph{Sheaves with connection on abelian varieties}, Duke Math. J., 84(3):565--598, 1996 \emph{Correction to: ``Sheaves with connection on abelian varieties.'' Duke Math. J., 87(1):205--211, 1997.} \end{itemize} Proof that the original version of the conjecture is false in general is due to \begin{itemize}% \item [[Vincent Lafforgue]], \emph{Quelques calculs reli\'e{}s \`a{} la correspondance de Langlands g\'e{}om\'e{}trique pour $\mathbb{P}^1$ (version provisoire)} 2009 (\href{http://www.math.jussieu.fr/~vlafforg/}{web}, \href{http://vlafforg.perso.math.cnrs.fr/geom.pdf}{pdf}) \end{itemize} The refined version of the conjecture stated in [[derived algebraic geometry]], called the [[categorical geometric Langlands conjecture]], is due to \begin{itemize}% \item [[Dennis Gaitsgory]], [[Nick Rozenblyum]], \emph{[[Notes on geometric Langlands]], (\href{http://www.math.harvard.edu/~gaitsgde/GL/}{web})} \item [[Dima Arinkin]], [[Dennis Gaitsgory]], \emph{Singular support of coherent sheaves, and the geometric Langlands conjecture} (\href{http://arxiv.org/abs/1201.6343}{arXiv.1201.6343}) \end{itemize} Other comments on the relation to [[TQFT]] include \begin{itemize}% \item [[Mikhail Kapranov]], \emph{Analogies between the Langlands Correspondence and Topological Quantum Field Theory}, in \emph{Functional Analysis on the Eve of the 21st Century} Progress in Mathematics Volume 131/132, 1995, pp 119-151 \end{itemize} Comments on the development of the geometric duality by [[Robert Langlands]] himself: \begin{itemize}% \item [[Robert Langlands]], \emph{The Search for a Mathematically Satisfying Geometric Theory of Automorphic Forms}, Notes for a lecture at Mostow-Fest, Yale 2013 (\href{http://publications.ias.edu/rpl/paper/2578}{IAS page}, \href{http://www.youtube.com/watch?v=pfpzET8UkF4}{video}, \href{http://publications.ias.edu/sites/default/files/lecture_6.pdf}{pdf}) \item [[Robert Langlands]], \emph{[[Problems in the theory of automorphic forms -- 45 years later]]}, talk at \href{https://www.maths.nottingham.ac.uk/personal/ibf/files/sc3.html}{Symmetries and correspondences in number theory, geometry, algebra, physics: intra-disciplinary trends}, Oxford, July 5 - July 8, 2014 \end{itemize} Langlands's doubts about or dissatifaction with the ``geometric Langlands program'' expressed in these talks (where he suggests that his name not be associated with the ``geometric'' part of the program) eventually led to \begin{itemize}% \item [[Robert Langlands]], \emph{Об аналитическом виде геометрической теории автоморфных форм}, IAS 2018 (\href{http://publications.ias.edu/rpl/paper/2678}{ias:2678}, \href{http://publications.ias.edu/sites/default/files/iztvestiya_3.pdf}{pdf}) \end{itemize} This in turn led to the reaction \begin{itemize}% \item [[Edward Frenkel]], \emph{Is there an analytic theory of automorphic functions for complex algebraic curves?} (\href{https://arxiv.org/abs/1812.08160}{arXiv:1812.08160}) \end{itemize} See also the deformation to the [[quantum geometric Langlands correspondence]], such as \begin{itemize}% \item [[Mina Aganagic]], [[Edward Frenkel]], [[Andrei Okounkov]], \emph{Quantum $q$-Langlands Correspondence} (\href{https://arxiv.org/abs/1701.03146}{arXiv:1701.03146}) \end{itemize} \hypertarget{surveys_and_reviews}{}\subsubsection*{{Surveys and reviews}}\label{surveys_and_reviews} A classical survey is \begin{itemize}% \item [[Edward Frenkel]], \emph{Lectures on the Langlands Program and Conformal Field Theory}, in \emph{Frontiers in number theory, physics, and geometry II}, Springer Berlin Heidelberg, 2007. 387-533. (\href{http://arxiv.org/abs/hep-th/0512172}{arXiv:hep-th/0512172}) \end{itemize} Another set of lecture notes on geometric Langlands and [[nonabelian Hodge theory]] is \begin{itemize}% \item [[Ron Donagi]], [[Tony Pantev]], \emph{Lectures on the geometric Langlands conjecture and non-abelian Hodge theory}, 2009 (\href{http://www.icmat.es/seminarios/langlands/school/handouts/pantev.pdf}{pdf}) \end{itemize} More exposition of the relation to [[string theory]] and [[S-duality]] is in \begin{itemize}% \item [[Edward Frenkel]], \emph{Gauge Theory and Langlands Duality}, S\'e{}minaire Bourbaki no 1010, June 2009 (\href{http://arxiv.org/abs/0906.2747}{arXiv:0906.2747}) \end{itemize} \hypertarget{further_resources}{}\subsubsection*{{Further resources}}\label{further_resources} Collections of resources are here; \begin{itemize}% \item [[David Ben-Zvi]], Geometric Langlands -- Lectures and Resources (\href{http://www.math.utexas.edu/users/benzvi/Langlands.html}{web}) \item geometric Laglands \href{http://www.math.uchicago.edu/~mitya/langlands}{page} \end{itemize} Notes on two introductory lecture talks are here: \begin{itemize}% \item \href{http://golem.ph.utexas.edu/string/archives/000806.html}{Pantev on Langlands I} \href{http://golem.ph.utexas.edu/string/archives/000807.html}{Pantev on Langlands II} \end{itemize} See also \begin{itemize}% \item Ng\^o{} Bo Ch\^a{}u, \emph{Le lemme fondamental pour les algebres de Lie}, \href{http://arxiv4.library.cornell.edu/abs/0806.4566}{arxiv/0806.4566} \item James Arthur, \emph{The Work of Ng\^o{} Bo Ch\^a{}u}, Proc. ICM Hyderabad 2010, \href{http://www.icm2010.org.in/wp-content/icmfiles/laudaions/fields2.pdf}{pdf} \item lecture notes on an introductory talk by [[Tony Pantev]]: \href{http://golem.ph.utexas.edu/string/archives/000806.html}{Pantev on Langlands I}, \href{http://golem.ph.utexas.edu/string/archives/000807.html}{Pantev on Langlands II} \item [[Edward Frenkel]], \emph{Langlands correspondence for loop groups}, \href{http://math.berkeley.edu/~frenkel/NEWBOOK}{description}, \href{http://math.berkeley.edu/~frenkel/loop.pdf}{pdf} \item [[Edward Frenkel]], a Bourbaki exposition, \href{http://math.berkeley.edu/~frenkel/BOOK/bourbaki.pdf}{pdf} \item [[Edward Frenkel]], \emph{Langlands duality for representations of quantum groups}, \href{http://arxiv.org/abs/0809.4453}{arxiv/0809.4453} \end{itemize} \hypertarget{ReferencesInterpretationInStringTheory}{}\subsubsection*{{Interpretation in string theory}}\label{ReferencesInterpretationInStringTheory} \hypertarget{global}{}\paragraph*{{Global}}\label{global} An interpretation of the global geometric Langlands correspondence as describing [[S-duality]] of [[topological twist|topologically twisted]] [[super Yang-Mills theory]], incarnated in [[mirror symmetry]] on its [[KK-compactification]] to 2d [[sigma-models]] ([[A-model]]/[[B-model]]-type) was given in \begin{itemize}% \item [[Anton Kapustin]], [[Edward Witten]], \emph{Electric-Magnetic Duality And The Geometric Langlands Program} , Communications in number theory and physics, Volume 1, Number 1, 1--236 (2007) (\href{http://arxiv.org/abs/hep-th/0604151}{arXiv:hep-th/0604151}) \item [[Edward Frenkel]], [[Edward Witten]], \emph{Geometric Endoscopy and Mirror Symmetry} (\href{http://arxiv.org/abs/0710.5939}{arXiv:0710.5939}) \item [[Edward Witten]], \emph{Mirror Symmetry, Hitchin's Equations, And Langlands Duality} (\href{http://arxiv.org/abs/0802.0999}{arXiv:0802.0999}) \end{itemize} and discussed in the bigger picture of [[S-duality]] arising as the conformal invariance of the [[6d (2,0)-superconformal QFT]] in \begin{itemize}% \item [[Edward Witten]], \emph{Geometric Langlands From Six Dimensions}, in Peter Kotiuga (ed.) \emph{A Celebration of the Mathematical Legacy of Raoul Bott}, AMS 2010 (\href{http://arxiv.org/abs/0905.2720}{arXiv:0905.2720}) \end{itemize} Reflections on the history (and possible future) of this insight are in \begin{itemize}% \item interview with [[Edward Witten]] by [[Hirosi Ooguri]], 2014 (\href{http://www.ams.org/notices/201505/rnoti-p491.pdf}{pdf}) \end{itemize} An exposition of the relation to [[S-duality]] and [[electro-magnetic duality]] is in (\hyperlink{Frenkel09}{Frenkel 09}) and in \begin{itemize}% \item [[Edward Frenkel]], \emph{What Do Fermat's Last Theorem and Electro-magnetic Duality Have in Common?} KITP talk 2011 (\href{http://online.kitp.ucsb.edu/online/bblunch/frenkel/}{web}) \item [[Edward Frenkel]], \emph{Overview of the links between the Langlands program and 4D super Yang--Mills theory}, KITP talk 2010, \href{http://online.kitp.ucsb.edu/online/duallang_m10/frenkel}{video page}, notes \href{http://online.kitp.ucsb.edu/online/duallang_m10/frenkel/pdf/Frenkel_LanglandsQFT_KITP.pdf}{pdf} \end{itemize} Further developments are surveyed in \begin{itemize}% \item [[David Ben-Zvi]], \emph{[[Loop Groups, Characters and Elliptic Curves]]}, 2012 \end{itemize} Further discussion is also in \begin{itemize}% \item Tamas Hausel, \emph{Global topology of the Hitchin system} (\href{http://arxiv.org/abs/1102.1717}{arXiv:1102.1717}, \href{http://geom.epfl.ch/files/content/sites/geom/files/Calgary0312.pdf}{pdf slides}) \item Kevin Setter, \emph{Topological quantum field theory and the geometric Langlands correspondence}. Dissertation (Ph.D.), California Institute of Technology 2013 (\href{http://resolver.caltech.edu/CaltechTHESIS:09192012-150137728}{web}) \end{itemize} Discussion from the point of view of [[M-theory]] is in \begin{itemize}% \item [[Meng-Chwan Tan]], \emph{M-Theoretic Derivations of 4d-2d Dualities: From a Geometric Langlands Duality for Surfaces, to the AGT Correspondence, to Integrable Systems} (\href{http://arxiv.org/abs/1301.1977}{arXiv:1301.1977}) \end{itemize} A relation to [[T-duality]] (of the group manifolds!) is discussed in \begin{itemize}% \item [[Calder Daenzer]], [[Erik van Erp]], \emph{T-Duality for Langlands Dual Groups} (\href{http://arxiv.org/abs/1211.0763}{arXiv:1211.0763}) \end{itemize} \hypertarget{local}{}\paragraph*{{Local}}\label{local} Discussion of [[local Langlands correspondence|local]] [[archimedean field|Archimedean]] Langlands duality for [[Whittaker functions]] as [[mirror symmetry]] of a suitable [[A-model]] and [[B-model]] is discussed in \begin{itemize}% \item [[Anton Gerasimov]], Dimitri Lebedev, [[Sergey Oblezin]], \emph{Archimedean L-factors and Topological Field Theories I} (\href{http://arxiv.org/abs/0906.1065}{arXiv:0906.1065}) \emph{Archimedean L-factors and Topological Field Theories II} (\href{http://arxiv.org/abs/0909.2016}{arXiv:0909.2016}) \emph{Parabolic Whittaker Functions and Topological Field Theories I} (\href{http://arxiv.org/abs/1002.2622}{arXiv:1002.2622}) \end{itemize} [[!redirects geometric Langlands duality]] [[!redirects geometric Langlands program]] [[!redirects geometric Langlands theory]] [[!redirects geometric Langlands duality]] [[!redirects geometric Langlands]] [[!redirects geometric Langlands conjecture]] \end{document}