\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{geometric embedding} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{relation_to_localization}{Relation to localization}\dotfill \pageref*{relation_to_localization} \linebreak \noindent\hyperlink{factorizations_and_images}{Factorizations and images}\dotfill \pageref*{factorizations_and_images} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \textbf{geometric embedding} is the right notion of embedding or inclusion of [[topoi]] $F \hookrightarrow E$, i.e. of [[subtoposes]]. Notably the inclusion $Sh(S) \hookrightarrow PSh(S)$ of a [[category of sheaves]] into its [[presheaf]] [[topos]] or more generally the inclusion $Sh_j E \hookrightarrow E$ of sheaves in a topos $E$ into $E$ itself, is a geometric embedding. Actually every geometric embedding is of this form, up to equivalence of [[topos|topoi]]. Another perspective is that a geometric embedding $F \hookrightarrow E$ is the [[localizations]] of $E$ at the class $W$ or morphisms that the [[left adjoint]] $E \to F$ sends to isomorphisms in $F$. The induced geometric morphism of a topological immersion $X \hookrightarrow Y$ is a geometric embedding. The converse holds if $Y$ is a $T_0$ space. (Example A4.2.12(c) in (\hyperlink{Johnstone}{Johnstone})) \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} For $F$ and $E$ two [[topos|topoi]], a [[geometric morphism]] \begin{displaymath} F \stackrel{f}{\to} E \;\;\;\; F \stackrel{\stackrel{f_*}{\longrightarrow}}{\underset{f^*}{\longleftarrow}} E \end{displaymath} is a \textbf{geometric embedding} if the following equivalent conditions are satisfied \begin{itemize}% \item the [[direct image]] functor $f_*$ is [[full and faithful functor|full and faithful]] (so that $F$ is a full [[subcategory]] of $E$); \item the counit $\epsilon : f^* f_* \to Id_{F}$ of the [[adjoint functor|adjunction]] $(f^* \dashv f_*)$ is an [[isomorphism]] \item there is a [[Lawvere-Tierney topology]] on $E$ and an [[equivalence of categories]] $e : F \stackrel{\simeq}{\to} Sh_j E$ such that the diagram of geometric morphisms $\itexarray{ F &\stackrel{f_*}{\to}& E \\ & {}_{e}\searrow^\simeq & \uparrow^{i} \\ && Sh_j E}$ commutes up to natural isomorphism $e^* i^* \simeq f^*$ \end{itemize} That the first two conditions are equivalent is standard, that the third one is equivalent to the first two is for instance corollary 7 in section VII, 4 of (\hyperlink{MacLaneMoerdijk}{MacLaneMoerdijk}) \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{relation_to_localization}{}\subsubsection*{{Relation to localization}}\label{relation_to_localization} There is a close relation between geometric embedding and [[localization]]: [[reflective localization]]. Let $f : F \hookrightarrow E$ be a geometric embedding and let $W \subset Mor(E)$ be the class of morphisms sent by $f^*$ to isomorphisms in $F$. \begin{utheorem} We have: \begin{itemize}% \item $F$ is equivalent to the [[localization]] $E[W]^{-1}$; \item $F$ is equivalent to the [[full subcategory]] of $E$ on $W$-[[local objects]]. \end{itemize} \end{utheorem} This fact connects for instance the description of [[sheafification]] in terms of geometric embedding $Sh(S) \hookrightarrow PSh(S)$ as described for instance in \begin{itemize}% \item MacLane-Moerdijk, [[Sheaves in Geometry and Logic]] \end{itemize} with that in terms of [[localization]] at [[local isomorphisms]], as described in \begin{itemize}% \item Kashiwara-Schapira, [[Categories and Sheaves]]. \end{itemize} Moreover, this is the basis on which sheafification is generalized to [[(∞,1)-sheafification]] in \begin{itemize}% \item [[Jacob Lurie]], [[Higher Topos Theory]] . \end{itemize} The following gives a detailed proof of the above assertion. Write $\eta : Id_E \to f_* f^*$ for the unit of the adjunction. Since $f_*$ is fully faithful we will identify objects and morphism of $F$ with their images in $E$. To further trim down the notation write $\bar {(-)} := f^*$ for the left adjoint. \begin{udefn} Write $W$ for the class of morphism that are sent to isomorphism under $f^*$, \begin{displaymath} W = (f^*)^{-1}\{g: c\stackrel{\simeq}{\to} d \in Mor(E)\} \,. \end{displaymath} \end{udefn} \begin{uprop} $E$ equipped with the class $W$ is a [[category with weak equivalences]], in that $W$ satisfies 2-out-of-3. \end{uprop} \begin{proof} Follows since isomorphisms satisfy 2-out-of-3. \end{proof} \begin{uprop} $W$ is a left [[calculus of fractions|multiplicative system]]. \end{uprop} \begin{proof} This follows using the fact that $f^*$ is left exact and hence preserves finite limits. In more detail: We have already seen in the previous proposition that \begin{itemize}% \item every isomorphism is in $W$; \item $W$ is closed under composition. \end{itemize} It remains to check the following points: Given any \begin{displaymath} \itexarray{ && a \\ && \downarrow^w \\ b &\stackrel{h}{\to}& c } \end{displaymath} with $w \in W$, we have to show that there is \begin{displaymath} \itexarray{ d &\to& a \\ \downarrow^{w'} && \downarrow^w \\ b &\stackrel{h}{\to}& c } \end{displaymath} with $w' \in W$. To get this, take this to be the [[pullback]] diagram, $w' := h^* w$. Since $f^*$ preserves pullbacks, it follows that \begin{displaymath} \itexarray{ \bar d &\to& \bar a \\ \downarrow^{\bar w'} && \downarrow^{\bar w} \\ \bar b &\stackrel{\bar h}{\to}& \bar c } \end{displaymath} is a pullback diagram in $F$ with $\bar w' = \bar h^* \bar w$. But by assumption $\bar w$ is an isomorphism. Therefore $\bar w'$ is an isomorphism, therefore $w'$ is in $W$. Finally for every \begin{displaymath} a \stackrel{\stackrel{r}{\to}}{\stackrel{s}{\to}} b \stackrel{w}{\to} c \end{displaymath} with $w \in W$ such that the two composites coincide, we need to find \begin{displaymath} d \stackrel{w'}{\to} a \stackrel{\stackrel{r}{\to}}{\stackrel{s}{\to}} b \end{displaymath} with $w' \in W$ such that the composites again coincide. To get this, take $w'$ to be the [[equalizer]] of the two morphisms. Sending everything with $f^*$ to $F$ we find from \begin{displaymath} \bar a \stackrel{\stackrel{\bar r}{\to}}{\stackrel{\bar s}{\to}} b \stackrel{\bar w}{\to} c \end{displaymath} that $\bar r = \bar s$, since $\bar w$ is an isomorphism. This implies that $\bar w'$ is the equalizer \begin{displaymath} \bar d \stackrel{\bar w'}{\to} a \stackrel{\stackrel{\bar r}{\to}}{\stackrel{\bar s}{\to}} b \end{displaymath} of two equal morphism, hence an identity. So $w'$ is in $W$. \end{proof} \begin{uprop} For every object $a \in E$ \begin{itemize}% \item the unit $\eta_a : a \to \bar a$ is in $W$; \item if $a$ is already in $F$ then the unit is already an isomorphism. \end{itemize} \end{uprop} \begin{proof} This follows from the [[triangle identities]] of the [[adjoint functors]]. \begin{displaymath} \itexarray{ & \nearrow &\Downarrow^{\eta}& \searrow^{Id_E} \\ E &\stackrel{\bar{(-)}}{\to}& F &\hookrightarrow& E &\stackrel{\bar{(-)}}{\to}& F \\ &&& \searrow &\Downarrow^{\simeq}& \nearrow_{Id_F} } \;\;\;\; = \;\;\;\; \itexarray{ & \nearrow \searrow^{\bar{(-)}} \\ E &\Downarrow^{Id}& F \\ & \searrow \nearrow_{\bar{(-)}} } \end{displaymath} and \begin{displaymath} \itexarray{ &&& \nearrow &\Downarrow^{\eta}& \searrow^{Id_E} \\ F &\hookrightarrow& E &\stackrel{\bar{(-)}}{\to}& F &\hookrightarrow& E \\ & \searrow &\Downarrow^{\simeq}& \nearrow_{Id_F} } \;\;\;\; = \;\;\;\; \itexarray{ & \nearrow \searrow \\ F &\Downarrow^{Id}& E \\ & \searrow \nearrow } \end{displaymath} In components they say that \begin{itemize}% \item for every $a \in E$ we have $(\bar a \stackrel{\bar \eta_a}{\to} \bar{\bar a} \stackrel{\simeq}{\to} \bar a) = Id_{\bar a}$ \item for every $a \in F$ we have $(a \stackrel{\eta_a}{\to} \bar a \stackrel{\simeq}{\to} a) = Id_a$ \end{itemize} This implies the claim. \end{proof} \begin{udefn} An object $a \in E$ is \textbf{$W$-[[local object]]} if for every $g : c \to d$ in $W$ the map \begin{displaymath} g^* : Hom_E(d,a) \stackrel{\simeq}{\to} Hom_E(c,a) \end{displaymath} obtained by precomposition is an isomorphism. \end{udefn} \begin{uprop} Up to isomorphism, the $W$-local objects are precisely the objects of $F$ in $E$ \end{uprop} \begin{proof} First assume that $a \in F$. We need to show that $a$ is $W$-local. Notice that the existence of the required isomorphism $Hom_F(d,a) \simeq Hom_F(c,a)$ is equivalent to the statement that for every diagram \begin{displaymath} \itexarray{ c &\stackrel{}{\to}& d \\ \downarrow^{h} \\ a } \end{displaymath} there is a unique extension \begin{displaymath} \itexarray{ c &\stackrel{}{\to}& d \\ \downarrow^{h} & \swarrow \\ a } \,. \end{displaymath} To see the existence of this extension, hit the original diagram with $f^*$ to get \begin{displaymath} \itexarray{ \bar c &\stackrel{\simeq}{\to}& \bar d \\ \downarrow^{\bar h} \\ \bar a \simeq a } \,. \end{displaymath} By the assumption that $c \to d$ is in $W$ the morphism $\bar c \to \bar d$ here is an isomorphism. By the assumption that $a$ is already in $F$ we have $\bar a \simeq a$ since the counit is an isomorphism. Therefore this diagram clearly has a unique extension \begin{displaymath} \itexarray{ \bar c &\stackrel{\simeq}{\to}& \bar d \\ \downarrow^{\bar h} & \swarrow_{\exists ! k} \\ \bar a \simeq a } \,. \end{displaymath} By the hom-isomorphism (using full faithfullness of $f_*$ to work entirely in $E$) \begin{displaymath} Hom_E(\bar d, a) \simeq Hom_E(d,a) \end{displaymath} this defines a morphism $k : d \to a$. Chasing $k$ through the naturality diagram of the hom-isomorphism \begin{displaymath} \itexarray{ Hom_E(\bar d, \bar a) &\stackrel{\simeq}{\to}& Hom_E(d,\bar a) \\ \downarrow && \downarrow \\ Hom_E(\bar c, \bar a) &\stackrel{\simeq}{\to}& Hom_E(c,\bar a) } \,. \end{displaymath} shows that $k : d \to a$ does extend the original diagram. Again by the Hom-isomorphism, it is the unique morphism with this property. So $a \in F$ is $W$-local. Now for the converse, assume that a given $a$ is $W$-local. By one of the above propositions we know that the unit $\eta_a : a \to \bar a$ is in $W$, so by the $W$-locality of $a$ it follows that \begin{displaymath} \itexarray{ a &\stackrel{\eta_a}{\to}& \bar a \\ \downarrow^{Id_a} \\ a } \end{displaymath} has an extension \begin{displaymath} \itexarray{ a &\stackrel{\eta_a}{\to}& \bar a \\ \downarrow^{Id_a} & \swarrow_{\rho_a} \\ a } \,. \end{displaymath} By the 2-out-of-3 property of $W$ shown in one of the above propositions, (using that $Id_a$, being an isomorphism, is in $W$) it follows that $\rho_a : \bar a \to a$ is in $W$. Since $\bar a$ is in $F$ and therefore $W$-local by the above, it follows that also \begin{displaymath} \itexarray{ \bar a &\stackrel{\rho_a}{\to}& a \\ \downarrow^{Id_{\bar a}} \\ \bar a } \end{displaymath} has an extension \begin{displaymath} \itexarray{ \bar a &\stackrel{\rho_a}{\to}& a \\ \downarrow^{Id_{\bar a}} & \swarrow_{\lambda_a} \\ \bar a } \,. \end{displaymath} So $\eta_a$ has a left inverse $\rho_a$ which itself has a left inverse $\lambda_a$. It follows that $\rho_a$ is also a right inverse to $\eta_a$, since \begin{displaymath} \begin{aligned} \stackrel{\rho_a}{\to} \stackrel{\eta_a}{\to} & = \stackrel{\rho_a}{\to} \stackrel{\eta_a}{\to} \underset{id}{\underbrace{ \stackrel{\rho_a}{\to} \stackrel{\lambda_a}{\to} }} \\ & = \stackrel{\rho_a}{\to} \underset{id}{\underbrace{ \stackrel{\eta_a}{\to} \stackrel{\rho_a}{\to} }} \stackrel{\lambda_a}{\to} \\ &= \stackrel{\rho_a}{\to} \stackrel{\lambda_a}{\to} \\ &= Id \end{aligned} \,. \end{displaymath} So if $a$ is $W$-local we find that $\eta_a : a \to \bar a$ is an isomorphism, hence that $a$ is isomorphic to an object of $F$. \end{proof} \begin{ucor} $F$ is equivalent to the full [[subcategory]] $E_{W-loc}$ of $E$ on $W$-[[local objects]]. \end{ucor} \begin{proof} By standard reasoning (e.g. [[Categories and Sheaves|KS lemma 1.3.11]]) there is a functor $F \to E_{W-loc}$ and a natural isomorphism \begin{displaymath} \itexarray{ F &&\hookrightarrow&& E \\ & \searrow &\Downarrow^{\simeq}& \nearrow \\ && E_{W-loc} } \,. \end{displaymath} Since $F \hookrightarrow E$ and $E_{W-loc} \hookrightarrow E$ are [[full and faithful functor|full and faithful]], so is $F \to E_{W-loc}$. Since by the above it is also essentially surjective, it establishes the equivalence $F \simeq E_{W-loc}$. \end{proof} \begin{uprop} $F$ is [[equivalence of categories|equivalent]] to the [[localization]] $E[W^{-1}]$ of $E$ at $W$. \end{uprop} \begin{proof} By one of the above propositions we know that $W$ is a [[calculus of fractions|left multiplicative systems]]. This implies that the localization $E[W^{-1}]$ is (equivalent to) the category with the same objects as $E$, and with [[hom-sets]] given by \begin{displaymath} Hom_{E[W^{-1}]}(a,b) = \underset{a' \stackrel{p \in W}{\to}a}{colim} Hom_E(a',b) \,. \end{displaymath} There is an obvious candidate for a functor \begin{displaymath} F \to E[W^{-1}] \end{displaymath} given on objects by the usual embedding by $f_*$ and on morphism by the map which regards a morphism trivially as a [[span]] with left leg the identity \begin{displaymath} (a \to b) \;\; \mapsto \;\; \left( \itexarray{ a &\to& b \\ \downarrow^{Id_a} \\ a } \right) \,. \end{displaymath} For this to be an [[equivalence of categories]] we need to show that this is a [[essentially surjective functor|essentially surjective]] and [[full and faithful functor]]. To see essential surjectivity, let $a$ be any object in $E$ and let $\eta_a : a \to \bar a$ be the component of the unit of our adjunction on $a$, as above. By one of the above propositons, $\eta_a$ is in $W$. This means that the span \begin{displaymath} \itexarray{ a &\stackrel{Id_a}{\to}& a \\ \downarrow^{\eta_a} \\ \bar a } \end{displaymath} represents an element in $Hom_{E[W^{-1}]}(\bar a,a)$, and this element is clearly an isomorphism: the inverse is represented by \begin{displaymath} \itexarray{ a &\stackrel{\eta_a}{\to}& \bar a \\ \downarrow^{Id_a} \\ a } \,. \end{displaymath} Since every $\bar a$ is in the image of our functor, this shows that it is essentially surjective. To see fullness and faithfulness, let $a, b\in F$ be any two objects. By one of the above propositions this means in particular that $b$ is a $W$-[[local object]]. As discussed above, this means that every span \begin{displaymath} \itexarray{ a' &\to& b \\ \downarrow^w \\ a } \end{displaymath} with $w \in W$ has a unique extension \begin{displaymath} \itexarray{ a' &\to& b \\ \downarrow^w & \nearrow \\ a } \,. \end{displaymath} But this implies that in the colimit that defines the [[hom-set]] of $E[W^{-1}]$ all these spans are identified with spans whose left leg is the identiy. And these are clearly in bijection with the morphisms in $Hom_E(a,b) \simeq Hom_F(a,b)$ so that indeed \begin{displaymath} Hom_{E[W^{-1}]}(a,b) \simeq Hom_{F}(a,b) \end{displaymath} for all $a,b \in F$. Hence our functor is also full and faithful and therefore define an [[equivalence of categories]] \begin{displaymath} F \stackrel{\simeq}{\to} E[W^{-1}] \,. \end{displaymath} \end{proof} \hypertarget{factorizations_and_images}{}\subsubsection*{{Factorizations and images}}\label{factorizations_and_images} There is a [[factorization system on a 2-category|factorization system]] on the [[2-category]] [[Topos]] whose left class is the [[surjective geometric morphisms]] and whose right class is the geometric embeddings. The factorization of a geometric morphism can be said to construct its [[image]] in the topos-theoretic sense. See [[geometric surjection/embedding factorization]]. Moreover, each geometric embedding itself has a [[(dense,closed)-factorization]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} In the more general context of [[(∞,1)-topos theory]] an \textbf{$(\infty,1)$-geometric embedding} is an [[(∞,1)-geometric morphism]] \begin{displaymath} (f^* \dashv f_*) : \mathcal{X} \stackrel{\leftarrow}{\hookrightarrow} \mathcal{Y} \end{displaymath} such that the [[right adjoint]] [[direct image]] $f_*$ is a [[full and faithful (∞,1)-functor]]. See [[reflective sub-(∞,1)-category]] for more details. \hypertarget{references}{}\subsection*{{References}}\label{references} Section VII, 4 of \begin{itemize}% \item [[Saunders Mac Lane]] and [[Ieke Moerdijk]], \emph{[[Sheaves in Geometry and Logic]]} \end{itemize} and section A4.2 of \begin{itemize}% \item [[Peter Johnstone]], \emph{[[Elephant|Sketches of an elephant: a topos theory compendium]]}. \end{itemize} [[!redirects geometric embeddings]] [[!redirects (∞,1)-geometric embedding]] [[!redirects (infinity,1)-geometric embedding]] [[!redirects sub-(∞,1)-topos]] [[!redirects sub-(∞,1)-toposes]] [[!redirects sub-(infinity,1)-topos]] [[!redirects sub-(infinity,1)-toposes]] [[!redirects sub-topos]] [[!redirects sub-toposes]] [[!redirects sub-topoi]] [[!redirects subtopos]] [[!redirects subtoposes]] [[!redirects subtopoi]] [[!redirects geometric inclusion]] [[!redirects geometric inclusions]] \end{document}