\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{geometric morphism} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{RelationToHomomorphismOfLocales}{Relation to homomorphisms of locales}\dotfill \pageref*{RelationToHomomorphismOfLocales} \linebreak \noindent\hyperlink{RelationToMorphismsOfSites}{Relation to morphisms of sites}\dotfill \pageref*{RelationToMorphismsOfSites} \linebreak \noindent\hyperlink{RelationToLogicalMorphisms}{Relation to logical morphisms}\dotfill \pageref*{RelationToLogicalMorphisms} \linebreak \noindent\hyperlink{StructurePreserved}{Structure preserved by geometric morphisms}\dotfill \pageref*{StructurePreserved} \linebreak \noindent\hyperlink{surjectionembedding_factorization}{Surjection/embedding factorization}\dotfill \pageref*{surjectionembedding_factorization} \linebreak \noindent\hyperlink{special_classes_of_geometric_morphisms}{Special classes of geometric morphisms}\dotfill \pageref*{special_classes_of_geometric_morphisms} \linebreak \noindent\hyperlink{BetweenPresheafToposes}{Between presheaf toposes}\dotfill \pageref*{BetweenPresheafToposes} \linebreak \noindent\hyperlink{surjections_and_embeddings}{Surjections and embeddings}\dotfill \pageref*{surjections_and_embeddings} \linebreak \noindent\hyperlink{global_sections_and_constant_sheaves}{Global sections and constant sheaves}\dotfill \pageref*{global_sections_and_constant_sheaves} \linebreak \noindent\hyperlink{point_of_a_topos}{Point of a topos}\dotfill \pageref*{point_of_a_topos} \linebreak \noindent\hyperlink{changeofbase}{Change-of-base}\dotfill \pageref*{changeofbase} \linebreak \noindent\hyperlink{sheafification}{Sheafification}\dotfill \pageref*{sheafification} \linebreak \noindent\hyperlink{sheaftopoi}{Geometric morphisms of sheaf topoi}\dotfill \pageref*{sheaftopoi} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For $X$ and $Y$ [[topological spaces]], a [[continuous function]] $X \to Y$ induces (in particular) two [[functors]] \begin{itemize}% \item the [[direct image]] $f_* : Sh(X) \to Sh(Y)$ \item the [[inverse image]] $f^* : Sh(Y) \to Sh(X)$ \end{itemize} between the corresponding [[Grothendieck topos|Grothendieck topoi]] of [[sheaf|sheaves]] on $X$ and $Y$. These are such that: \begin{itemize}% \item $f^*$ is [[adjoint functor|left adjoint]] to $f_*$, so $f^*$ preserves all small [[colimits]] and $f_*$ preserves all small [[limits]]. \item furthermore, $f^*$ is [[exact functor|left exact]] in that it preserves finite [[limits]]. \end{itemize} Morever, if $X$ and $Y$ are [[sober space|sober]] [[topological spaces]] every pair of functors with these properties comes uniquely from a continuous map $X \to Y$ (see the theorem below). A \emph{geometric morphism} between arbitrary [[topos|topoi]] is the direct generalization of this situation. Another motivation of the concept comes from the the fact that a [[functor]] such as $f^*$ that preserves finite [[limits]] and arbitrary [[colimits]] (since it is a [[adjoint functor|left adjoint]]) necessarily preserves all constructions in [[geometric logic]]. See also [[classifying topos]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} If $E$ and $F$ are [[topos|toposes]], a \textbf{geometric morphism} $f:E\to F$ consists of an pair of [[adjoint functors]] $(f^*,f_*)$ \begin{displaymath} f_* : E \to F \end{displaymath} \begin{displaymath} E \leftarrow F : f^* \,, \end{displaymath} such that the [[left adjoint]] $f^*:F \to E$ preserves [[finite limits]]. We say that \begin{itemize}% \item $f_*$ is the [[direct image]] \item $f^*$ is the [[inverse image]] \end{itemize} of the geometric morphism. \end{defn} If moreover the [[inverse image]] $f^*$ has also a [[left adjoint]] $f_! : E \to F$, then $f$ is an [[essential geometric morphism]]. \begin{remark} \label{}\hypertarget{}{} Since [[Grothendieck topos|Grothendieck toposes]] satisfy the (dual) hypotheses of Freyd's special [[adjoint functor theorem]], any functor $f^*$ between Grothendieck toposes which preserves all small [[colimit]]s must have a [[right adjoint]]. Therefore, a geometric morphism $f : E \to F$ between Grothendieck toposes could equivalently be defined as a functor $E \leftarrow F : f^*$ preserving [[finite limits]] and all [[small set|small]] [[colimits]]. \end{remark} \begin{remark} \label{}\hypertarget{}{} In view of its definition in terms of a pair of [[adjoint functor]]s, the direction of a geometric morphism is a convention. However, with the other convention it would better be called an \textbf{algebraic morphism}. See [[Isbell duality]] for more on this [[duality]] between [[algebra]] and [[geometry]]. \end{remark} See also (\hyperlink{Johnstone}{Johnstone, p. 162/163}). \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} We discuss some general properties of geometric morphisms. The \begin{itemize}% \item \hyperlink{RelationToHomomorphismOfLocales}{Relation to homomorphisms of locales} \end{itemize} also serves as a motivation or justification of the notion of geometric morphism. The \begin{itemize}% \item \hyperlink{RelationToMorphismsOfSites}{Relation to homomorphisms of sites} \end{itemize} is a fairly straightforward generalization of that situation, reflecting the passage from (sheaf-) [[(0,1)-topos]]es to general [[topos|(1,1)-toposes]]. A somewhat subtle point about geometric morphisms of toposes is that there is also another sensible notion of topos [[homomorphism]]s: [[logical morphism]]s. In \begin{itemize}% \item \hyperlink{RelationToLogicalMorphisms}{Relation to logical morphism} \end{itemize} aspects of the relation between the two concepts are discussed. The reader wishing to learn about geometric morphisms systematically might want to first read the section on \emph{\hyperlink{BetweenPresheafToposes}{Geometric morphisms between presheaf toposes}} below, as much of the following discussion makes use of a few basic facts discussed there. \hypertarget{RelationToHomomorphismOfLocales}{}\subsubsection*{{Relation to homomorphisms of locales}}\label{RelationToHomomorphismOfLocales} The definition of geometric morphisms may be motivated as being a [[categorification]] of the definition of morphisms of [[locale]]s. Recall that \begin{defn} \label{LocaleHomomorphisms}\hypertarget{LocaleHomomorphisms}{} A [[homomorphism]] of [[locale]]s \begin{displaymath} f : X \to Y \end{displaymath} is dually a morphism of [[frame]]s (the ``[[frame of opens|frames of open subsets]]'' of $X$ and $Y$, respectively) \begin{displaymath} \mathcal{O}(X) \leftarrow \mathcal{O}(Y) : f^* \,. \end{displaymath} This, in turn, is a [[functor]] (of [[posets]]) that \begin{enumerate}% \item preserves finite [[limit]]s (called [[meet]]s in this context); \item preserves arbitrary (small) [[colimit]]s (called [[join]]s in this context). \end{enumerate} \end{defn} Such a preservation of finite limits and arbitrary colimits is precisely what characterizes the [[inverse image]] part of a geometric morphism, and hence by the [[adjoint functor theorem]] already characterizes the full notion of geometric morphisms. Since a [[locale]] may equivalently be thought of as a [[(0,1)-topos]], this means that geometric morphisms are direct generalization of the notion of locale homorphisms to 1-toposes. The following says this in more precise fashion. \begin{defn} \label{DirectImageInducedByLocaleMorphism}\hypertarget{DirectImageInducedByLocaleMorphism}{} For $f : X \to Y$ a homomorphism of [[locale]]s, let \begin{displaymath} f_* : Sh(X) \to Sh(Y) \end{displaymath} be the functor between their [[sheaf topos]]es that sends a sheaf $F : \mathcal{O}(X)^{op} \to Set$ to the composite \begin{displaymath} f_* F : \mathcal{O}(Y)^{op} \stackrel{f^*}{\longrightarrow} \mathcal{O}(X)^{op} \stackrel{F}{\longrightarrow} Set \,, \end{displaymath} where $f^*$ is the corresponding frame morphism as in def. \ref{LocaleHomomorphisms}. \end{defn} \begin{prop} \label{}\hypertarget{}{} The functor $f_*$ in def. \ref{DirectImageInducedByLocaleMorphism} is the [[direct image]] part of a geometric morphism of sheaf toposes \begin{displaymath} (f^* \dashv f_*) : Sh(X) \stackrel{\overset{f^*}{\longleftarrow}}{\underset{f_*}{\longrightarrow}} Sh(Y) \,. \end{displaymath} Moreover, the corresponding [[inverse image]] functor $f^*$ does restrict on [[representable functor|representable]]s to the frame morphism that we also denoted $f^*$. \end{prop} In (\hyperlink{Johnstone}{Johnstone}) this appears as lemma C1.4.1 and theorem C1.4.3. \begin{proof} Since a morphism of [[frame]]s is a morphism of [[site]]s, as discussed there, this follows from the corresponding propositions in the section \href{site#MorphismsOfSitesAndGeometricMorphisms}{Morphisms of sites and geometric morphisms}. \end{proof} \begin{prop} \label{}\hypertarget{}{} The construction $X \mapsto Sh(X)$ extends to a [[2-functor]] \begin{displaymath} Sh : Locale \hookrightarrow Topos \end{displaymath} from the [[category]] [[Locale]] of [[locales]] to the [[2-category]] [[Topos]] of [[topos]]es and geometric morphisms between them \end{prop} See also at [[locale]] the section \href{locale#RelationToToposes}{relation to toposes}. \hypertarget{RelationToMorphismsOfSites}{}\subsubsection*{{Relation to morphisms of sites}}\label{RelationToMorphismsOfSites} See at [[morphism of sites]] the section \emph{\href{morphism+of+sites#RelationToGeometricMorphisms}{Relation to geometric morphisms}}. \hypertarget{RelationToLogicalMorphisms}{}\subsubsection*{{Relation to logical morphisms}}\label{RelationToLogicalMorphisms} \begin{prop} \label{}\hypertarget{}{} Every geometric morphism whose [[direct image]] is a [[logical morphism]] is an [[equivalence of categories|equivalence]]. \end{prop} This is a restatement of \href{logical+functor#LogicalMorphismsRightAdjointToCartesianFunctors}{this proposition} at [[logical morphism]]. See there for a proof. But [[inverse images]] can be nontrivial logical morphisms: \begin{prop} \label{}\hypertarget{}{} The [[inverse image]] of an [[etale geometric morphism]] is a [[logical morphism]]. \end{prop} Generally, a geometric morphism with logical inverse image is called an [[atomic geometric morphism]]. See there for more details. \hypertarget{StructurePreserved}{}\subsubsection*{{Structure preserved by geometric morphisms}}\label{StructurePreserved} The [[inverse image]]s of geometric morphisms preserves the structure of toposes in the sense of their characterization as \emph{categories with [[finite limit]]s that are \href{indexed+category#WellPoweredness}{well-powered} [[indexed categories]] with respect to the canonical indexing over themselves.} This appears in (\hyperlink{Johnstone}{Johnstone}) as remark B2.2.7 based on example B1.3.17 and prop. B1.3.14. See at [[indexed category]] the section \href{indexed+category#WellPoweredness}{Well-poweredness}, \hypertarget{surjectionembedding_factorization}{}\subsubsection*{{Surjection/embedding factorization}}\label{surjectionembedding_factorization} Every geometric morphism factors, essentially uniquely, as a [[geometric surjection]] followed by a [[geometric embedding]]. See \emph{[[geometric surjection/embedding factorization]]} for more on this. \hypertarget{special_classes_of_geometric_morphisms}{}\subsection*{{Special classes of geometric morphisms}}\label{special_classes_of_geometric_morphisms} There are various special cases and types of classes of geometric morphisms. For instance \begin{itemize}% \item [[global section|global sections]] \item [[geometric embedding]] \item [[locally connected geometric morphism]] \begin{itemize}% \item [[essential geometric morphism]] \item [[connected geometric morphism]] \end{itemize} \item [[etale geometric morphism]] \item [[open geometric morphism]], [[closed geometric morphism]] \item [[proper geometric morphism]] \item [[local geometric morphism]] \item [[bounded geometric morphism]] \item [[base change]] \item [[localic geometric morphism]] \item [[hyperconnected geometric morphism]] \item [[cohesive topos|cohesive morphism]] \item [[atomic geometric morphism]] \item [[dominant geometric morphism]] \end{itemize} The following subsections describe some of these in more detail. \hypertarget{BetweenPresheafToposes}{}\subsubsection*{{Between presheaf toposes}}\label{BetweenPresheafToposes} Let $C$ and $D$ be any two [[categories]]. We write $C^{op}$ and $D^{op}$ for their [[opposite categories]] and $[C, Set]$, $[D, Set]$ for the corresponding [[presheaf toposes]] over $C^{op}$ and $D^{op}$, respectively. \begin{prop} \label{}\hypertarget{}{} Every [[functor]] $f : C \to D$ induces an ([[essential geometric morphism|essential]], even) geometric morphism \begin{displaymath} f := (f^* \dashv f_*) : [C,Set] \stackrel{\overset{f_!}{\longrightarrow}}{\stackrel{\overset{f^*}{\longleftarrow}}{\underset{f_*}{\longrightarrow}}} [D, Set] \,, \end{displaymath} where $f^* = (-) \circ f$ is the functor given by precomposition presheaves with $f$. Moreover, for $\eta : f \Rightarrow g : C \to D$ a [[natural transformation]] between two such functors there is an induced [[geometric transformation]] $(f^* \dashv f_*) \Rightarrow (g^* \dashv g_*)$. This is compatible with composition in that it makes forming [[presheaf topos]]es a [[2-functor]] \begin{displaymath} [-,Set] : Cat \to Topos \end{displaymath} from the [[2-category]] [[Cat]] to the [[2-category]] [[Topos]]. \end{prop} This appears as (\hyperlink{Johnstone}{Johnstone, example A4.1.4}). \begin{proof} Since [[categories of presheaves]] have all [[limit]]s and [[colimit]]s, the left and right [[Kan extension]]s $Lan_f$ and $Ran_f$ along $f$ exists, and form with $f^*$ an [[adjoint triple]] \begin{displaymath} [C,Set] \stackrel{\overset{Lan_f}{\longrightarrow}}{\stackrel{\overset{f^*}{\longleftarrow}}{\underset{Ran_f}{\longrightarrow}}} [D, Set] \,. \end{displaymath} Hence $f_! \simeq Lan_f$ and $f_* \simeq Ran_f$. Notice that [[left adjoint]]s and [[right adjoint]]s to a functor are, if they exist, unique up to unique [[isomorphism]]. \end{proof} Next we consider extra [[property]] on $C$, $D$ and $f$ such that $f^*$ induces also a second geometric morphism, going the other way round. This plays a role for the discussion of \hyperlink{RelationToMorphismsOfSites}{morphisms of sites}. For that reason we pass now from $C$ and $D$ to their [[opposite categories]] hence consider genuine [[presheaves]] on $C$ and $D$. \begin{prop} \label{}\hypertarget{}{} Let $C$ and $D$ by categories with [[finite limit]]s and let $f : C \to D$ be a finite-limit [[preserved limit|preserving]] functor. Then in the [[adjoint triple]] \begin{displaymath} (f_! \dashv f^* \dashv f_*) : [C^{op},Set] \stackrel{\overset{f_!}{\longrightarrow}}{\stackrel{\overset{f^*}{\longleftarrow}}{\underset{f_*}{\longrightarrow}}} [D^{op}, Set] \end{displaymath} the left [[Kan extension]] $f_!$ also preserves finite limits and hence in this case $f^*$ is also the [[direct image]] of a geometric morphism going the other way round: \begin{displaymath} (f_! \dashv f^* ) : [D^{op},Set] \to [C^{op}, Set] \,. \end{displaymath} \end{prop} This appears as (\hyperlink{Johnstone}{Johnstone, example A4.1.10}). \begin{proof} Recall that for $F : C^{op} \to Set$ a functor, the left [[Kan extension]] $f_! F : D^{op} \to Set$ is computed over each object $d \in D$ by the [[colimit]] \begin{displaymath} (f_! F)(d) = \lim_\to \left( (d/f)^{op} \stackrel{U}{\to} C^{op} \stackrel{F}{\to} Set \right) \end{displaymath} where $(d/f)$ is the [[comma category]] and \begin{displaymath} U : (d/f) \to C \end{displaymath} is the evident forgetful functor. This is natural in $F$ and so $(f_! -)(d)$ is the functor \begin{displaymath} (f_! -)(d) : [C^{op}, Set] \stackrel{U^*}{\to} [(d/f)^{op}, Set] \stackrel{\lim_\to}{\to} Set \,. \end{displaymath} By the above argument $U^*$ has a [[left adjoint]] (the left [[Kan extension]] along $U$) hence itself preserves all [[limit]]s. It then suffices to observe (see below) that by the fact that $f$ preserves finite limits we have that the categories $(d/f)^{op}$ are [[filtered categories]]. Then by the fact (see there) that [[filtered colimit]]s commute with finite limits, it follows that also $\lim_\to$ preserves finite limits, and hence $(f_! -)(d)$ does. Since colimits of presheaves are computed objectwise, this shows that $f_!$ preserves finite limits. This completes the proof. Here is an explicit desciption of the filteredness of the [[comma category]] $(d/f)^{op}$ for any object $f$. We check the axioms on a [[filtered category]]: \begin{itemize}% \item \emph{non-emptiness} : There is an object in $(d/f)^{op}$: since $f$ by assumption preserves the [[terminal object]], take the terminal morphism $(d \to f(*) = *)$; \item \emph{connectedness} : for any two objects $(d \stackrel{h_1}{\to} f(c_1))$ and $(d \stackrel{h_2}{\to} f(c_2))$ form the [[product]] $c_1 \times c_2$ and use that $f$ preserves this to produce the object $(d \stackrel{f(h_1), f(h_2)}{\to} f(c_1) \times f(c_2) \simeq f(c_1 \times c_2))$. Then the image under $f$ of the two projections provides the required [[span]] \begin{displaymath} \itexarray{ && d \\ & {}^{\mathllap{f(h_1)}}\swarrow & \downarrow^{(f(h_1),f(h_2))} & \searrow^{\mathrlap{f(h_2)}} \\ f(c_1) &\stackrel{f(p_1)}{\leftarrow}& f(c_1 \times c_2) & \stackrel{f(p_2)}{\to} & f(c_2) } \,. \end{displaymath} \item finally, for \begin{displaymath} \itexarray{ && d \\ & \swarrow && \searrow \\ f(c_1) && \stackrel{\overset{h_1}{\to}}{\underset{h_2}{\to}}& & f(c_2) } \end{displaymath} two [[parallel morphism]], let $eq(h_1,h_2)$ be the [[equalizer]] of the underlying morphism in $C$. Since $f$ preserves equalizers we have an object $(d \to f(eq(h_1,h_2)))$ and a morphism to $(d \to f(c_1))$ that equalizes the above two morphisms. \end{itemize} \end{proof} \hypertarget{surjections_and_embeddings}{}\subsubsection*{{Surjections and embeddings}}\label{surjections_and_embeddings} A geometric morphism $f : E \to F$ is a \textbf{surjection} if $f^*$ is [[faithful functor|faithful]]. It is an \textbf{[[geometric embedding|embedding]]} if $f_*$ is [[full and faithful functor|fully faithful]]. \begin{uprop} Up to equivalence, every [[geometric embedding|embedding]] of toposes is of the form \begin{displaymath} Sh_j(E) \to E \,, \end{displaymath} where $Sh_j(E)$ is the topos of [[sheaf|sheaves]] with respect to a [[Lawvere-Tierney topology]] $j : \Omega \to \Omega$ on $E$. \end{uprop} This means in particular that fully faithful geometric morphisms into [[Grothendieck topos|Grothendieck topoi]] are an equivalent way of encoding a [[Grothendieck topology]]. \begin{uprop} Up to equivalence, every surjection of topoi is of the form \begin{displaymath} E \to E_G \end{displaymath} where $E_G$ is the category of coalgebras for a finite-limit-preserving [[comonad]] on $E$. \end{uprop} Every geometric morphism $f:E\to F$ factors, uniquely up to equivalence, as a surjection followed by an embedding. There are two ways to produce this factorization: either construct $E_G$ where $G= f^*f_*$ is the comonad induced by the adjunction $f^*\dashv f_*$, or construct $Sh_j(F)$ where $j$ is the smallest Lawvere-Tierney topology on $F$ such that $f$ factors through $Sh_j(F)$. In fact, surjections and embeddings form a 2-categorical [[orthogonal factorization system]] on the 2-category of topoi. \hypertarget{global_sections_and_constant_sheaves}{}\subsubsection*{{Global sections and constant sheaves}}\label{global_sections_and_constant_sheaves} For every [[Grothendieck topos]] $E$, there is a geometric morphism \begin{displaymath} \Gamma : E \stackrel{\leftarrow}{\to} Set : const \end{displaymath} called the [[global section]]s functor. It is given by the [[hom-set]] out of the [[terminal object]] \begin{displaymath} \Gamma(-) = Hom_E({*}, -) \end{displaymath} and hence assigns to each object $A\in E$ its set of [[global element]]s $\Gamma(A) = Hom_E(*,A)$. If we think of $A$ as a [[sheaf]], then $\Gamma(A)$ is the set of \textbf{global sections}. The [[left adjoint]] $const : Set \to E$ of the global section functor is the canonical [[Set]]-[[copower|tensoring]] functor \begin{displaymath} \otimes : Set \times E \to E \end{displaymath} applied to the [[terminal object]] \begin{displaymath} const = (-)\otimes {*} : Set \to E \end{displaymath} which sends a set $S$ to the [[coproduct]] of $|S|$ copies of the terminal object \begin{displaymath} S \otimes {*} = \coprod_{s \in S} {*} \,. \end{displaymath} This is called the \textbf{constant object} of $E$ on the set $S$. Notably when $E$ is a [[Grothendieck topos|sheaf topos]] this is the \textbf{[[constant sheaf]]} on $S$. The [[left adjoint]]ness is just the defining property of the [[copower|tensoring]] \begin{displaymath} Hom_E(const S, A) \simeq Hom_E(S \otimes {*},A) \simeq Hom_{Set}(S, Hom_E(*,A)) \,. \end{displaymath} This left adjoint preserves [[product]]s, using that colimits in a topos are stable by base change (see [[commutativity of limits and colimits]]) \begin{displaymath} \left( \coprod_{s_1 \in S_1} *\right) \times \left( \coprod_{s_2 \in S_2} *\right) = \coprod_{s_1 \in S_1} \left(* \times \left( \coprod_{s_2 \in S_2} *\right)\right) = \coprod_{s_1 \in S_1} \left( \coprod_{s_2 \in S_2} *\right) = \coprod_{s_1 \in S_1} \coprod_{s_2 \in S_2} * = \coprod_{s \in S_1 \times S_2} * \end{displaymath} and it preserves [[equalizer]]s and therefore [[limit]]s. So it is left exact and we do have a geometric morphism. \hypertarget{point_of_a_topos}{}\subsubsection*{{Point of a topos}}\label{point_of_a_topos} For $E$ a topos, a geometric morphism \begin{displaymath} x : Set \to E \end{displaymath} is called a [[point of a topos]]. \hypertarget{changeofbase}{}\subsubsection*{{Change-of-base}}\label{changeofbase} For $E$ any [[topos]] and $k : B \to A$ any morphism in $E$ there is the [[base change|change-of-base]] functor of [[over category|over categories]] \begin{displaymath} k^* : (E/A) \to (E/B) \end{displaymath} by [[pullback]]. As described at [[dependent product]] this functor has both a [[left adjoint]] $\coprod_k : E/B \to E/A$ as well as a [[right adjoint]] $\prod_k : E/B \to E/A$. Therefore \begin{displaymath} (\Pi_k, k^*) : E/B \leftrightarrow E/B \end{displaymath} is a geometric morphism. Hence $(\coprod_k \dashv k^* \dashv \prod_k)$ is an [[essential geometric morphism]]. \hypertarget{sheafification}{}\subsubsection*{{Sheafification}}\label{sheafification} A [[category of sheaves]] is a [[geometric embedding]] into a presheaf topos \begin{displaymath} Sh(C) \hookrightarrow PSh(C) \,. \end{displaymath} \hypertarget{sheaftopoi}{}\subsubsection*{{Geometric morphisms of sheaf topoi}}\label{sheaftopoi} Geometric morphisms between [[localic topoi]] are equivalent to [[continuous maps]] of [[locales]], which in turn are equivalent to continuous maps of [[topological spaces]] if you restrict to [[sober spaces]]. Unrolling this: For $X$ a [[topological space]], write $Sh(X) := Sh(Op(X))$ as usual for the [[topos]] given by the [[category of sheaves]] on the [[category of open subsets]] $Op(X)$ with the standard [[coverage]] \begin{ulemma} For every continuous map $f : X \to Y$ of [[sober space|sober]] [[topological spaces]] with the induced [[functor]] $f^{-1} : Op(Y) \to Op(X)$ of [[sites]], the [[direct image]] \begin{displaymath} f_* : Sh(X) \to Sh(Y) \end{displaymath} and the [[inverse image]] \begin{displaymath} f^* : Sh(Y) \to Sh(X) \end{displaymath} constitute a geometric morphism \begin{displaymath} f : Sh(X) \to Sh(Y) \end{displaymath} (denoted by the same symbol, by convenient abuse of notation). This map $Hom_{Top}(X,Y) \to GeomMor(Sh(X),Sh(Y))$ is an bijection of sets. \end{ulemma} \begin{proof} That the induced pair $(f^*, f_*)$ forms a geometric morphism is (or should eventually be) discussed at [[inverse image]]. We now show that every geometric morphism of sheaf toposes arises this way from a continuous function, at least up to isomorphism. (In fact, more is true: the category of geometric morphisms $Sh(X)\to Sh(Y)$ is equivalent to the poset of continuous functons $X\to Y$ with the [[specialization ordering]] ([[Elephant]], Proposition C.1.4.5.). We follow \hyperlink{MacLaneMoerdijk}{MacLane-Moerdijk, page 348}. One reconstructs the continuous map $f : X \to Y$ from a geometric morphism $f : Sh(X) \to Sh(Y)$ as follows. Write ${*} = Y \in Sh(Y)$ for the sheaf on $Op(Y)$ constant on the singleton set, the [[terminal object]] in $Sh(Y)$. Notice that since the [[inverse image]] $f^*$ preserves finite [[limits]], every [[subobject]] $U_Y \hookrightarrow {*}$ is taken by $f^*$ to a subobject $U_X \hookrightarrow X$, obtained by applying $f^*$ to the [[pullback]] diagram \begin{displaymath} \itexarray{ U_Y &\to& {*} = Y \\ \downarrow && \downarrow \\ {*} = Y &\to& \Omega } \end{displaymath} that characterizes the subobject $U_Y$ in the [[topos]]. But, as the notation already suggests, the subobjects of $X,Y$ are just the open sets, i.e. the representable sheaves. This yields a \emph{function} $f^* : Obj(Op(Y)) \to Obj(Op(X))$ from open subsets to open subsets. By assumption, this preserves finite limits and arbitrary colimits, i.e. finite intersections and arbitrary unions of open sets. In other words, it is a [[frame|frame homomorphism]], and thus can be regarded as a morphism $X\to Y$ of [[locales]]. We can now use this to define a function $\bar f : X \to Y$ of the sets underlying the topological spaces $X$ and $Y$ by setting \begin{displaymath} (\bar f(x) = y) \Leftrightarrow \forall V \ni y: x \in f^*(V) \,. \end{displaymath} This yields a well defined function for the following reasons (which for the moment we spell out in the case where $Y$ is [[Hausdorff space|Hausdorff]], although the result should hold ---and furthermore, hold [[constructive mathematics|constructively]]--- whenever $Y$ is sober): \begin{itemize}% \item there is at most one $y$ satisfying this equation: if $y_1 \neq y_2$ both satisfy it, there are, by assumption of $Y$ being [[Hausdorff space|Hausdorff]], neighbourhoods $V_1 \ni y_1$ and $V_2 \ni y_2$ such that (using that $f^*$ preserves limits hence intersections) $f^*(V_1) \cap f^*(V_2) = f^*(V_1 \cap V_2) = \emptyset$, which contradicts the assumption. \item there is at least one $y$ satisfying this equation: again by contradiction: if there were none then every $y \in Y$ has a neighbourhood $V_y$ with $x \not\in f^*(V_y)$, so that similarly to above we conclude with $x \not\in \cup_{y \in Y} f^*(V_y) = f^*(\cup_y V_y) = f^*(Y) = X$ again a contradiction. \end{itemize} Am I right that what we are really need of our space here is not necessarily that it be Hausdorff but simply that it be [[sober space|sober]]? (Then the nonconstructive aspects of the argument ---which is what made me look at this--- come in only because the theorem that a Hausdorff space must be sober is not constructively valid.) ---Toby [[Mike Shulman]]: Yes, that's exactly right. All the complication defining $\bar f$ above is just an unrolled way of saying that geometric morphisms between [[locale|localic]] topoi are equivalent to continuous maps of locales, which are equivalent to continuous functions if you have sober spaces. I think that should be clarified. \emph{Toby}: OK, I added a paragraph at the beginning of the example to clarify this. I still need to rewrite the argument immediately above to apply to sober spaces. (Everything else seems to go through exactly the same.) So our function $\bar f : X \to Y$ is well defined and satisfies $\bar f^{-1}(U_Y) = f^*(U_Y)$ for every open set $U_Y \in Obj(Op(Y))$. In particular it is therefore a continuous map. It remains to check that this map reproduces the geometric morphism that we started with. For that we compute its [[direct image]] on any sheaf $A \in Sh(X)$ as \begin{displaymath} \begin{aligned} \bar f_*(A) : U_Y &\mapsto A(\bar f^{-1}(U_Y)) \\ & \simeq Hom_{Sh(X)}(\bar f^{-1}(U_Y),A) \\ & = Hom_{Sh(X)}(f^* V, E) \\ & \simeq Hom_{Sh(X)}(V, f_* E) \\ & \simeq (f_* A)(U_Y) \end{aligned} \end{displaymath} \end{proof} \begin{cor} \label{}\hypertarget{}{} The points $x \in X$ of the topological space $X$ are in canonical bijection with the points of $Sh(X)$ in the sense of [[point of a topos]]. \end{cor} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[étale map]] \item [[logical morphism]] \item \textbf{geometric morphism} \begin{itemize}% \item [[geometric logic]], [[geometric theory]] \end{itemize} \item [[(∞,1)-geometric morphism]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Geometric morphisms are the topic of section VII of \begin{itemize}% \item [[Saunders MacLane]] and [[Ieke Moerdijk]], \emph{[[Sheaves in Geometry and Logic]]} . \end{itemize} Embeddings and surjections are discussed in section VII.4. Geometric morphisms are defined in section A4 of \begin{itemize}% \item [[Peter Johnstone]], \emph{[[Sketches of an Elephant]]} \end{itemize} The special classes of geometric morphisms are discussed in section C3. [[!redirects geometric morphisms]] \end{document}