\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{geometric realization} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{OfSimplicialSets}{Of cell complexes such as simplicial sets}\dotfill \pageref*{OfSimplicialSets} \linebreak \noindent\hyperlink{OfSimplicialTopologicalSpaces}{Of simplicial topological spaces}\dotfill \pageref*{OfSimplicialTopologicalSpaces} \linebreak \noindent\hyperlink{OfCohesiveInfinityGroupoids}{Of cohesive $\infty$-groupoids}\dotfill \pageref*{OfCohesiveInfinityGroupoids} \linebreak \noindent\hyperlink{OfSimplicialObjects}{Of simplicial objects in a category}\dotfill \pageref*{OfSimplicialObjects} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{realizations_as_cw_complexes}{Realizations as CW complexes}\dotfill \pageref*{realizations_as_cw_complexes} \linebreak \noindent\hyperlink{GeometricRealizationIsLeftExact}{Theorem: Geometric realization is left exact}\dotfill \pageref*{GeometricRealizationIsLeftExact} \linebreak \noindent\hyperlink{geometric_realization_preserves_equalizers}{Geometric realization preserves equalizers}\dotfill \pageref*{geometric_realization_preserves_equalizers} \linebreak \noindent\hyperlink{geometric_realization_preserves_finite_products}{Geometric realization preserves finite products}\dotfill \pageref*{geometric_realization_preserves_finite_products} \linebreak \noindent\hyperlink{geometric_realization_preserves_fibrations}{Geometric realization preserves fibrations}\dotfill \pageref*{geometric_realization_preserves_fibrations} \linebreak \noindent\hyperlink{induced_properties_of_the_fibrant_replacement}{Induced properties of the fibrant replacement}\dotfill \pageref*{induced_properties_of_the_fibrant_replacement} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{compatibility_with_homotopy_limits}{Compatibility with homotopy limits}\dotfill \pageref*{compatibility_with_homotopy_limits} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \emph{Geometric realization} is the operation that builds from a [[simplicial set]] $X$ a [[topological space]] $|X|$ obtained by interpreting each element in $X_n$ -- each abstract $n$-simplex in $X$ -- as one copy of the standard topological $n$-simplex $\Delta^n_{Top}$ and then gluing together all these along their boundaries to a big topological space, using the information encoded in the face and degeneracy maps of $X$ on how these simplices are supposed to be stuck together. It generalises the geometric realization of [[simplicial complex]]es as described at that entry. This is the special case of the general notion of [[nerve and realization]] that is induced from the standard [[simplicial set|cosimplicial]] [[topological space]] $[n] \mapsto \Delta^n_{Top}$. (N.B.: in this article, $[n]$ denotes the ordinal with $n+1$ elements. The corresponding contravariant representable is denoted $\Delta(-, n)$.) In the context of [[homotopy theory]] geometric realization plays a notable role in the [[homotopy hypothesis]], where it is part of the [[Quillen equivalence]] between the [[model structure on topological spaces]] and the standard [[model structure on simplicial sets]]. The construction generalizes naturally to a map from [[simplicial object|simplicial]] [[topological space]]s to plain topological spaces. For more on that see [[geometric realization of simplicial spaces]]. The dual concept is \emph{[[totalization]]} . \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} There are various levels of generality in which the notion of (topological) geometric realization makes sense. The basic definition is \begin{itemize}% \item \hyperlink{OfSimplicialSets}{For cell complexes such as simplicial sets}. \end{itemize} A generalization of this of central importance is the \begin{itemize}% \item \hyperlink{OfSimplicialTopologicalSpaces}{Geometric realization of simplicial topological spaces} \end{itemize} Up to homotopy, this is a special case of a general notion of \begin{itemize}% \item \hyperlink{OfCohesiveInfinityGroupoids}{Geometric realization of cohesive ∞-groupoids}. \end{itemize} At the point-set level, it is also a special case of a general notion of \begin{itemize}% \item \hyperlink{OfSimplicialObjects}{Geometric realization of simplicial objects}. \end{itemize} \hypertarget{OfSimplicialSets}{}\subsubsection*{{Of cell complexes such as simplicial sets}}\label{OfSimplicialSets} Let $S$ be one of the categories of [[geometric shapes for higher structures]], such as the [[globe category]] or the [[simplex category]] or the [[cube category]]. There is an obvious functor $st : S \to$ [[Top]] which sends the standard \emph{cellular} shape $[n]$ (the standard cellular [[globe]], [[simplex]] or [[cube]], respectively) to the corresponding standard \emph{topological} shape (for instance the standard $n$-simplex $st([n]) := \{ (x_1, \cdots, x_n) | x_i \leq x_{i+1} \} \subset \mathbb{R}^{n}$ ) with the obvious induced face and boundary maps. Using this, in cases where $Top$ can be regarded as [[enriched category|enriched]] over and [[copower|tensored]] over a base category $V$, the \textbf{geometric realization} of a [[presheaf]] $K^\bullet : S^{op} \to V$ on $S$ -- e.g., of a [[globular set]], a [[simplicial set]] or a [[cubical set]], respectively (when $V= Set$) -- is the [[topological space]] given by the [[end|coend]], [[weighted limit|weighted colimit]], or [[tensor product of functors]] \begin{displaymath} |K^\bullet| = \int^{[n] \in S} st([n]) \cdot K^n \,. \end{displaymath} In the case of [[simplicial sets]], see for more discussion also \begin{itemize}% \item [[nerve]], [[homotopy hypothesis]]. \end{itemize} Via simplicial [[nerve]] functors geometric realization of simplicial sets induces geometric realizations of many other structures, for instance \begin{itemize}% \item [[geometric realization of categories]] \end{itemize} \hypertarget{OfSimplicialTopologicalSpaces}{}\subsubsection*{{Of simplicial topological spaces}}\label{OfSimplicialTopologicalSpaces} See \begin{itemize}% \item [[geometric realization of simplicial topological spaces]] \end{itemize} \hypertarget{OfCohesiveInfinityGroupoids}{}\subsubsection*{{Of cohesive $\infty$-groupoids}}\label{OfCohesiveInfinityGroupoids} Every [[cohesive (∞,1)-topos]] $\mathbf{H}$ (in fact every [[locally ∞-connected (∞,1)-topos]]) comes with its intrinsic notion of geometric realization. The general abstract definition is at [[cohesive (∞,1)-topos]] in the section . For the choice $\mathbf{H} =$ [[∞Grpd]] this reproduces the \hyperlink{OfSimplicialSets}{geometric realization of simplicial sets}, see at [[discrete ∞-groupoid]] the section For the choice $\mathbf{H} =$ [[ETop∞Grpd]] and [[Smooth∞Grpd]] this reproduces \hyperlink{OfSimplicialTopologicalSpaces}{geometric realization of simplicial topological spaces}. See the sections and \hypertarget{OfSimplicialObjects}{}\subsubsection*{{Of simplicial objects in a category}}\label{OfSimplicialObjects} Let $M$ be a [[cocomplete category|cocomplete]] [[simplicially enriched category]] with [[copowers]]. A \textbf{[[simplicial object]]} in $M$ is a functor $X:\Delta^{op}\to M$, where $\Delta$ is the [[simplex category]]. Its \textbf{geometric realization} is defined similarly to the classical case as a [[coend]]: \begin{displaymath} |X| = \int^{[n]\in\Delta} \Delta[n] \odot X_n \end{displaymath} where $\odot$ denotes the [[copower]] in $M$. This operation is a left adjoint which is even a simplicially enriched functor; see [[simplicial object]] for more details. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} In this section we consider topological \hyperlink{OfSimplicialSets}{geometric realization of simplicial sets}, which is the best studied and perhaps most significant case. \hypertarget{realizations_as_cw_complexes}{}\subsubsection*{{Realizations as CW complexes}}\label{realizations_as_cw_complexes} Each ${|X|}$ is a CW complex (see lemma \ref{mono} below), and so geometric realization ${|(-)|}: Set^{\Delta^{op}} \to Top$ takes values in the full subcategory of CW complexes, and therefore in any [[convenient category of topological spaces]], for example in the category $CGHaus$ of compactly generated Hausdorff spaces. Let $Space$ be any convenient category of topological spaces, and let $i \colon Space \to Top$ denote the inclusion. \begin{uprop} For any simplicial set $X$, there is a natural isomorphism $i(\int^{n: \Delta} X(n) \cdot \sigma(n)) \cong {|X|}$, where the coend on the left is computed in $Space$. \end{uprop} This is obvious: more generally, if $F: J \to A$ is a diagram and $i: A \hookrightarrow B$ is a full replete subcategory, and if the colimit in $B$ of $i \circ F$ lands in $A$, then this is also the colimit of $F$ in $A$. (The dual statement also holds, with limits instead of colimits.) Below, we let $R: Set^{\Delta^{op}} \to Space$ denote the geometric realization when considered as landing in $Space$. \hypertarget{GeometricRealizationIsLeftExact}{}\subsubsection*{{Theorem: Geometric realization is left exact}}\label{GeometricRealizationIsLeftExact} We continue to assume $Space$ is any [[convenient category of topological spaces]]. In this section we prove that geometric realization \begin{displaymath} R: Set^{\Delta^{op}} \to Space \end{displaymath} is a left [[exact functor]] in that it preserves [[finite limits]]. It is important that we use some such ``convenience'' assumption, because for example \begin{displaymath} {|(-)|}: Set^{\Delta^{op}} \to Top, \end{displaymath} valued in general [[topological spaces]], does not preserve products. (To get a correct statement, one usual procedure is to ``kelley-fy'' products by applying the coreflection $k: Haus \to CGHaus$. This gives the correct isomorphism in the case $Space = CGHaus$, where we have that ${|X \times Y|} \cong {|X|} \times_k {|Y|} \coloneqq k({|X|} \times {|Y|})$; the product on the right has been ``kelleyfied'' to the product appropriate for $CGHaus$.) We reiterate that $R$ denotes the geometric realization functor considered as valued in a convenient category of spaces, whereas ${|(-)|}$ is geometric realization viewed as taking values in $Top$. \begin{theorem} \label{leftexact}\hypertarget{leftexact}{} Let $U = \hom(1, -): Space \to Set$ be the underlying-set functor. Then the composite $U R: Set^{\Delta^{op}} \to Set$ is left exact. \end{theorem} \begin{proof} As described at the nLab article on triangulation \href{triangulation#StandardAffineSimplexFunctor}{here}, the composite \begin{displaymath} \Delta \stackrel{\sigma}{\to} Space \stackrel{U}{\to} Set \end{displaymath} can be described as the functor \begin{displaymath} \Delta \cong FinInt^{op} \hookrightarrow Int^{op} \stackrel{Int(-, I)}{\to} Set \end{displaymath} where $Int$ is the category of intervals (linearly ordered sets with distinct top and bottom). Because every interval, in particular $I$, is a [[filtered colimit]] of finite intervals, and because finite intervals are finitely presentable intervals, it follows that $U \sigma \colon \Delta \to Set$ is a [[flat functor]] (a [[filtered colimit]] of representables). But on general grounds, [[copower|tensoring]] with a flat functor is left exact, which in this case means \begin{displaymath} U R = - \otimes_\Delta U \sigma: Set^{\Delta^{op}} \to Set \end{displaymath} is left exact. \end{proof} Obviously the preceding proof is not sensitive to whether we use $Space$ or $Top$. \hypertarget{geometric_realization_preserves_equalizers}{}\paragraph*{{Geometric realization preserves equalizers}}\label{geometric_realization_preserves_equalizers} \begin{lemma} \label{mono}\hypertarget{mono}{} If $i: X \to Y$ is a [[monomorphism]] of simplicial sets, then $R(i): R(X) \to R(Y)$ is a [[closed subspace]] inclusion, in fact a [[relative CW-complex]]. In particular, taking $X = \emptyset$, $R(Y)$ is a $CW$-complex. \end{lemma} \begin{proof} Any monomorphism $i \colon X \to Y$ in $Set^{\Delta^{op}}$ can be seen as the result of iteratively adjoining nondegenerate $n$-simplices. In other words, there is a chain of inclusions $X = F(0) \hookrightarrow F(1) \hookrightarrow \ldots Y = colim_i F(i)$, where $F: \kappa \to Set^{\Delta^{op}}$ is a functor from some ordinal $\kappa = \{0 \leq 1\leq \ldots\}$ (as [[preorder]]) that preserves directed colimits, and each inclusion $F(\alpha \leq \alpha + 1): F(\alpha) \to F(\alpha + 1)$ fits into a pushout diagram \begin{displaymath} \itexarray{ \partial \Delta(-, n) & \to & F(\alpha) \\ \mathllap{j} \downarrow & & \downarrow \\ \Delta(-, n) & \to & F(\alpha+1) } \end{displaymath} where $j$ is the inclusion. Now $R(j)$ is identifiable as the inclusion $S^{n-1} \to D^n$, and since $R$ preserves pushouts (which are calculated as they are in $Top$), we see by \href{/nlab/show/subspace+topology#pushout}{this lemma} that $R F(\alpha) \to R F(\alpha+1)$ is a closed subspace inclusion and evidently a [[relative CW-complex]]. By \href{/nlab/show/subspace+topology#transfinite}{another lemma}, it follows that $X \to Y$ is also a closed inclusion and indeed a relative CW-complex. \end{proof} \begin{cor} \label{}\hypertarget{}{} $R: Set^{\Delta^{op}} \to Space$ preserves [[equalizers]]. \end{cor} \begin{proof} The equalizer of a pair of maps in $Top$ is computed as the equalizer on the level of underlying sets, equipped with the subspace topology. So if \begin{displaymath} E \stackrel{i}{\to} X \stackrel{\overset{f}{\longrightarrow}}{\underset{g}{\longrightarrow}} Y \end{displaymath} is an equalizer diagram in $Set^{\Delta^{op}}$, then ${|i|}$ is the equalizer of the pair ${|f|}$, ${|g|}$, because the underlying function $U({|i|})$ is the equalizer of $U({|f|})$, $U({|g|})$ on the underlying set level by the preceding theorem, and because ${|i|}$ is a (closed) subspace inclusion by lemma \ref{mono}. But this $Top$-equalizer ${{|i|}}: {{|E|}} \to {{|X|}}$ lives in the full subcategory $Space$, and therefore $R(i) = {|i|}$ is the equalizer of the pair $R(f) = {|f|}$, $R(g) = {|g|}$. \end{proof} As the proof indicates, that realization preserves equalizers is not at all sensitive to whether we use $Top$ or a convenient category of spaces $Space$. \hypertarget{geometric_realization_preserves_finite_products}{}\paragraph*{{Geometric realization preserves finite products}}\label{geometric_realization_preserves_finite_products} That geometric realization preserves products \emph{is} sensitive to whether we think of it as valued in $Top$ or in a convenient category $Space$. In particular, the proof uses [[cartesian closed category|cartesian closure]] of $Space$ in an essential way (in the form that [[finite products]] distribute over arbitrary [[colimits]]). First, an easy result on products of simplices. \begin{lemma} \label{product}\hypertarget{product}{} The realization of a product of two representables $\Delta(-, m) \times \Delta(-, n)$ is compact. \end{lemma} \begin{proof} It suffices to observe that $\Delta[m] \times \Delta[n]$ has finitely many non-degenerate simplices. That is clear since non-degenerate $k$-simplices in the nerve of a poset $P$ are exactly injective order preserving maps $[k] \to P$. \end{proof} \begin{lemma} \label{canonical}\hypertarget{canonical}{} The canonical map \begin{displaymath} {|\Delta(-, m) \times \Delta(-, n)|} \to {|\Delta(-, m)|} \times {|\Delta(-, n)|} \end{displaymath} is a homeomorphism. \end{lemma} \begin{proof} The canonical map is continuous, and a bijection at the underlying set level by theorem \ref{leftexact}. The codomain is the compact Hausdorff space $\sigma(m) \times \sigma(n)$, and the domain is compact by Lemma \ref{product}. But a continuous bijection from a compact space to a Hausdorff space is a homeomorphism. \end{proof} \begin{remark} \label{}\hypertarget{}{} The key properties of $I$ needed for this subsection are (1) the fact it is compact Hausdorff, and (2) the order relation $\leq$ on the interval $I$ defines a closed subset of $I \times I$. These properties ensure that the affine $n$-simplex $\{(x_1, \ldots, x_n) \in I^n: x_1 \leq \ldots \leq x_n\}$ is itself compact Hausdorff, so that the proof of lemma \ref{canonical} goes through. The point is that in place of $I$, we can really use any interval $L$ that satisfies these properties, thus defining an $L$-based geometric realization instead of the standard ($I$-based) geometric realization being developed here. \end{remark} \begin{theorem} \label{}\hypertarget{}{} The functor $R: Set^{\Delta^{op}} \to Space$ preserves products. \end{theorem} \begin{proof} The proof is purely formal. Let $X$ and $Y$ be simplicial sets. By the [[co-Yoneda lemma]], we have isomorphisms \begin{displaymath} X \cong \int^m X(m) \cdot \Delta(-, m) \qquad Y \cong \int^n Y(n) \cdot \Delta(-, n) \end{displaymath} and so we calculate \begin{displaymath} \itexarray{ R(X \times Y) & \cong & R((\int^m X(m) \cdot \Delta(-, m)) \times (\int^n Y(n) \cdot \Delta(-, n))) \\ & \cong & R(\int^m \int^n X(m) \cdot Y(n) \cdot (\Delta(-, m) \times \Delta(-, n))) \\ & \cong & \int^m \int^n X(m) \cdot Y(n) \cdot R(\Delta(-, m) \times \Delta(-, n)) \\ & \cong & \int^m \int^n X(m) \cdot Y(n) \cdot (R(\Delta(-, m)) \times R(\Delta(-, n)) \\ & \cong & \int^m \int^n X(m) \cdot Y(n) \cdot (\sigma(m) \times \sigma(n)) \\ & \cong & (\int^m X(m) \cdot \sigma(m)) \times (\int^n Y(n) \cdot \sigma(n)) \\ & \cong & R(X) \times R(Y) } \end{displaymath} where in each of the second and penultimate lines, we twice used the fact that $- \times -$ preserves colimits in its separate arguments (i.e., the fact that the nice category $Space$ is cartesian closed), and the remaining lines used the fact that $R$ preserves colimits, and also products of representables by lemma \ref{canonical}. \end{proof} \begin{itemize}% \item A slightly higher-level rendition of the proof might look like this:\begin{displaymath} \itexarray{ R(X \times Y) & \cong & R((X \otimes_{\Delta} \hom) \times (Y \otimes_{\Delta} \hom)) \\ & \cong & R((X \times Y) \otimes_{\Delta \times \Delta} (\hom \times \hom)) \\ & \cong & (X \times Y) \otimes_{\Delta \times \Delta} R(\hom \times \hom) \\ & \cong & (X \times Y) \otimes_{\Delta \times \Delta} (R(\hom) \times R(\hom)) \\ & \cong & (X \otimes_{\Delta} R(\hom)) \times (Y \otimes_{\Delta} R(\hom)) \\ & \cong & R(X \otimes_{\Delta} \hom) \times R(Y \otimes_{\Delta} \hom) \\ & \cong & R(X) \times R(Y) } \end{displaymath} \end{itemize} \hypertarget{geometric_realization_preserves_fibrations}{}\subsubsection*{{Geometric realization preserves fibrations}}\label{geometric_realization_preserves_fibrations} $\backslash$begin\{theorem\} The geometric realization of a [[Kan fibration]] is a [[Serre fibration]]. $\backslash$end\{theorem\} $\backslash$begin\{proof\} This is shown in \hyperlink{Quillen68}{Quillen 68}. $\backslash$end\{proof\} This result implies that the geometric realization functor preserves all five classes of maps in a [[model category]]: [[weak equivalences]], [[cofibrations]], [[acyclic cofibrations]], [[fibrations]], and [[acyclic fibrations]]. In fact the geometric realization of a Kan fibration is even a [[Hurewicz fibration]] (at least relative to a [[convenient category of spaces]] in which it lives). This follows from the fact that [[a Serre fibration between CW-complexes is a Hurewicz fibration]]; a direct proof along the lines of Quillen's can be found in \hyperlink{FP90}{Fritch and Piccinini, Theorem 4.5.25}. \hypertarget{induced_properties_of_the_fibrant_replacement}{}\subsubsection*{{Induced properties of the fibrant replacement}}\label{induced_properties_of_the_fibrant_replacement} The previous two sections show that the geometric realization preserves finite limits and fibrations. Since its right adjoint, the singular complex functor $Top \to sSet$, also preserves both (much more trivially), and since all objects of $Top$ are fibrant and the adjunction is simplicially enriched, it follows that the composite $sSet \to Top \to sSet$ is a simplicially enriched [[fibrant replacement functor]] on $sSet$ that additionally preserves both finite limits and fibrations. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item For $G$ a [[group]], $\mathbf{B}G$, its one-object [[groupoid]] obtained by [[delooping]], $N(\mathbf{B}G)$ the corresponding simplicial [[nerve]] [[Kan complex]], we have that the geometric realization\begin{displaymath} \mathcal{B}G = |N\mathbf{B}G| \end{displaymath} is the [[topological space]] that is the [[classifying space]] for $G$-[[principal bundle]]s ([[covering space]]s), as long as we give $G$ the [[discrete topology]]. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item \textbf{geometric realization} \begin{itemize}% \item [[geometric realization of categories|of categories]], [[geometric realization of simplicial topological spaces|of simplicial topological spaces]], [[geometric realization of cohesive ∞-groupoids|of cohesive ∞-groupoids]] \end{itemize} \item [[totalization]] \item [[singular complex functor]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \begin{itemize}% \item [[Daniel Quillen]], \emph{The geometric realization of a Kan fibration is a Serre fibration. Proc. Amer. Math. Soc. 19 1968 1499--1500. \href{https://www.ams.org/journals/proc/1968-019-06/S0002-9939-1968-0238322-1/S0002-9939-1968-0238322-1.pdf}{pdf}} \item Fritsch and Piccinini, \emph{Cellular Structures in Topology}, Cambridge University Press, 1990, ISBN 0521327849 \end{itemize} \hypertarget{compatibility_with_homotopy_limits}{}\subsubsection*{{Compatibility with homotopy limits}}\label{compatibility_with_homotopy_limits} Discussion of sufficient conditions for homotopy geometric realization to be compatible with [[homotopy pullback]] (see also at \emph{[[geometric realization of simplicial topological spaces]]}): \begin{itemize}% \item D. Anderson, \emph{Fibrations and geometric realization} , Bull. Amer. Math. Soc. Volume 84, Number 5 (1978), 765-788. (\href{http://projecteuclid.org/euclid.bams/1183541139}{euclid:1183541139}) \item [[Charles Rezk]], \emph{When are homotopy colimits compatible with homotopy base change?}, 2014 (\href{https://faculty.math.illinois.edu/~rezk/i-hate-the-pi-star-kan-condition.pdf}{pdf}, [[RezkHomotopyColimitsBaseChange.pdf:file]]) \item Edoardo Lanari, \emph{Compatibility of homotopy colimits and homotopy pullbacks of simplicial presheaves} (\href{http://algant.eu/documents/theses/lanari.pdf}{pdf}, [[LanariHomotopyColimitsBaseChange.pdf:file]]) (expanded version of \hyperlink{Rezk14}{Rezk 14}) \end{itemize} [[!redirects geometric realisation]] [[!redirects geometric realizations]] [[!redirects the geometric realization of a Kan fibration is a Serre fibration]] [[!redirects the geometric realization of a Kan fibration is a Hurewicz fibration]] \end{document}